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ABSTRACT

The cold start problem is a long-standing challenge in recommender
systems. That is, how to recommend for new users and new items
without any historical interaction record? Recent ML-based ap-
proaches have made promising strides versus traditional methods.
These ML approaches typically combine both user-item interac-
tion data of existing warm start users and items (as in CF-based
methods) with auxiliary information of users and items such as
user profiles and item content information (as in content-based
methods). However, such approaches face key drawbacks including
the error superimposition issue that the auxiliary-to-CF transforma-
tion error increases the final recommendation error; the ineffective
learning issue that long distance from transformation functions
to model output layer leads to ineffective model learning; and the
unified transformation issue that applying the same transformation
function for different users and items results in poor transformation.

Hence, this paper proposes a novel model designed to overcome
these drawbacks while delivering strong cold start performance.
Three unique features are: (i) a combined separate-training and
joint-training framework to overcome the error superimposition
issue and improve model quality; (ii) a Randomized Training mech-
anism to promote the effectiveness of model learning; and (iii) a
Mixture-of-Experts Transformation mechanism to provide ‘person-
alized’ transformation functions. Extensive experiments on three
datasets show the effectiveness of the proposed model over state-
of-the-art alternatives.

CCS CONCEPTS

« Information systems — Recommender systems.

KEYWORDS

collaborative filtering; cold start recommendation; randomized
training; mixture-of-experts

“Part of this work performed while interning at Comcast Applied Al Research Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR 20, July 25-30, 2020, Virtual Event, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8016-4/20/07...$15.00
https://doi.org/10.1145/3397271.3401178

Shahin Sefati
Comcast Applied Al Research Lab
Shahin_Sefati@comcast.com

James Caverlee
Texas A&M University
caverlee@tamu.edu

Representations <

i
Wafm{:i

Auxiliary —, ,f’éf e 4

CF Representations

Train: %

avii=0- L L=r@ . L=rG)

Infer: -

A7 =17 1 ()
(b)

Figure 1: (a) setup of cold start recommendation problem,
where both warm and cold users and items have auxiliary
representations (such as user profiles and item content); and
(b) the main idea of existing cold start recommendation algo-
rithms [7, 17, 28, 35, 36]: learn transformation functions to
transform auxiliary representations to CF representations.
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1 INTRODUCTION

One longstanding challenge for Collaborative Filtering (CF) based
recommendation methods is the cold start problem, i.e., to provide
recommendations for new users or items who have no historical
interaction record. The cold start problem is common in real world
applications. For example, 500 hours of new videos are uploaded to
YouTube every minute [8], 500,000 new users register in Facebook
every day [32], and web/mobile apps face the daily challenge of
onboarding new users and subscribers.

To provide recommendations for these new users and items,
many content-based methods [13, 21, 34] and heuristic methods
have been deployed, e.g., recommending popular items or geograph-
ically near items. However, recent research efforts [7, 17, 28, 35, 36]
that tackle the cold start problem from the perspective of machine
learning have made promising strides. As illustrated in Figure 1a,
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these ML-based efforts combine user-item interactions from ex-
isting warm start users and items (as in CF-based methods) with
auxiliary information from both warm and cold users and items
(as in content-based methods). This auxiliary information — be it
from user profiles, item descriptions, reviews, and other sources — is
often readily available even in the absence of user-item interactions.

Conventional CF models provide recommendations for warm
users and items by finding similarities between the CF represen-
tations of users and items, which are learned based on existing
user-item interactions. In contrast, these ML-based cold start rec-
ommendation approaches aim to learn CF representations for cold
start users and items lacking historical interactions. The key in-
sight is to learn two transformation functions - one for users and
one for items — to transform the auxiliary representations of these
new users and items into the CF space. As illustrated in Figure 1b,
the two transformation functions (fi7 and f7) are learned from in-
teractions and auxiliary representations of warm users and items;
the learned transformation functions are then applied on auxiliary
representations of cold start users and items to predict preference
scores at inference time. Hence, the fundamental challenge is how
to generate effective transformation functions based on the given
auxiliary information and user-item interactions.

In general, there exist two major categories of algorithms to
learn these transformation functions - separate-training methods
and joint-training methods. In this paper, we identify three major
issues with these existing methods that can impact the quality of
the learned transformation functions. These issues motivate our
proposed Heater framework.

To begin with, separate-training methods [3, 7, 26, 31, 33] sepa-
rately learn a CF model (by minimizing the Collaborative Filtering
error £F on the user-item interactions as in conventional CF mod-
els for warm start recommendation) and transformation functions
to transform auxiliary representations (by minimizing the differ-
ence Ltrqns between transformed auxiliary representations and CF
representations from a CF model), either in an end-to-end way or
non-end-to-end two-step way [3, 7, 26, 31, 33]. Separate-training
methods can fully utilize the user-item interaction data because
they apply sophisticated CF models directly on the interaction data.
However, they leave one challenge unsolved — the error superimpo-
sition problem. Due to the separation of learning CF and learning
transformation functions in the model objective function, the final
cold start recommendation error during inference is the summation
of the CF error LcF and the transformation error £;r4ns. Hence,
an increase in either of the two errors will decrease the overall cold
start recommendation performance.

On the other hand, joint-training methods [17, 28, 29, 36] fuse CF
and transformation functions together (i.e., models input auxiliary
representations and output recommendations with CF represen-
tations as hidden layers), and train models with the only aim of
minimizing the recommendation error £cf on the warm interac-
tion data. Since joint-training methods directly minimize £cF, and
learning of transformation functions is also guided by £cF, there is
no error superimposition issue. Nevertheless, there is another chal-
lenge for joint-training methods - the ineffective learning problem —
that is, because learning transformation functions is only guided
by the recommendation error which is based on the final model
output layer, the long distance from transformation layers to the

model output layer from the perspective of backpropagation leads
to ineffective model learning.

Moreover, a common issue with both separate-training and joint-
training methods is the unified transformation problem. Concretely,
almost all existing separate-training and joint-training methods
adopt unified transformation functions (either a linear transfor-
mation or a neural network based non-linear transformation) for
all users or items under the assumption that users (or items) keep
the same relative relationships in both the auxiliary representation
space and CF space. This assumption seldom holds because auxiliary
information is usually noisy and complex, and cannot be directly
aligned with the CF space. Thus, a unified transformation process
is not effective and can generate low-quality CF representations.

Our contributions. To address these three challenges, we propose
a new model Heater, which is designed to keep the advantages of
both separate-training and joint-training methods, while overcom-
ing the drawbacks identified above. To deal with the problem of
error superimposition and the problem of ineffective learning, we
combine the structures of separate-training and joint-training meth-
ods together as the basic framework of Heater. The main procedure
of training is that Heater first transforms auxiliary representations
to intermediate representations, then further refines intermediate
representations to final CF representations to minimize recommen-
dation error. Meanwhile, we also require the intermediate repre-
sentations to be as close as possible to high-quality pretrained CF
representations to improve the model effectiveness. To further ad-
dress the ineffective learning problem, we propose a Randomized
Training mechanism in which we randomly feed pretrained CF
representations or intermediate representations alternatively to
the refining component of Heater. By doing this, the effectiveness
of model training is protected by the high-quality pretrained CF
representations even when the intermediate representations are
of poor quality. Last, we propose a Mixture-of-Experts Trans-
formation, which adopts the Mixture-of-Expert [30] structure as
transformation functions so that Heater can provide ‘personal-
ized’ transformations for different users and items to tackle the
unified transformation issue. Furthermore, unlike most existing
methods [17, 28, 29, 31, 35], the proposed Heater can simultane-
ously recommend for both cold start users and items, rather than
requiring separate user-based and item-based models. Last, we con-
duct extensive experiments on three real-world datasets to show
the effectiveness of Heater over state-of-the-art alternatives, and
the effectiveness of each proposed component.

2 PROPOSED METHOD

In this section, we formalize the cold start recommendation problem,
then introduce the fundamental framework of Heater, the Random-
ized Training and Mixture-of-Experts Transformation mechanisms.

2.1 Cold Start Recommendation

Assume we have N,, warm users U,, = {1,2,...,N,,} and M,,
warm items 7, = {1,2,...,M,,}, each of which has at least one
historical interaction record. We denote the set of all historical
records as O = {(u, i)}, where u indexes one user, and i indexes one
item. We also have N, cold start users U, = {1,2,..., N} and M,
cold start items 7. = {1,2,..., M.}, all of which have zero historical



interaction record. For these cold start users and items, there are
three recommendation tasks:

Task 1: recommend warm items from 7, to cold users in U,;
Task 2: recommend cold items from 7, to warm users in U, ;
Task 3: recommend cold items from 7. to cold users in U,.

Note that most previous works only consider the one-sided cold
start situation [17, 28, 29, 31, 35], i.e., there are only cold start users
or cold start items in the system. In this paper, we consider the
more complex situation where there are cold start users and items
simultaneously in the system. Furthermore, we assume we have
access to auxiliary information such as an external user profile and
item content information for both warm and cold users and items,
denoted as U € RNwNe)XEu and T € RIMwMe)XEi where E,, and
E; are the auxiliary representation dimensions for users and items.

2.2 Heater Framework

As we have discussed, there are two main categories of cold start
recommendation approaches — separate-training and joint-training
methods, which are determined by the relationship between CF
and the transformation functions in the model. Both of these have
obvious advantages and disadvantages: separate-training methods
make full use of the user-item interaction data while suffering
from the error superimposition problem; joint-training methods
are free of the error superimposition issue but face the ineffective
learning problem. Thus, to overcome these problems, we propose a
framework to integrate the two distinct structures.

Due to the special characteristic that users or items involved
during inference time are never seen before during training, the
execution of Heater is different for training and inference. In the
following, we first focus on the training process, then describe how
to do inference by a trained model for cold start situations.

Training. Separate-training approaches learn CF representations
and auxiliary-to-CF transformation separately by two independent
losses £LoF and Lrans, thus, increase of each of them leads to worse
cold start recommendations (the error superimposition issue). To
avoid this error superimposition issue, we adopt the joint-training
structure as the foundation for Heater basic framework as shown
in Figure 2. Generally, Heater takes one warm user auxiliary repre-
sentation U, € R™F« and one warm item auxiliary representation
I; € R™Ei as inputs, and by multiple layers of transformation Uy,
and I; are transformed to the CF representations P, and Q7, of which
the dot product is the predicted preference score ﬁu,i = (P;)TQI’.
for the given user-item pair. More specifically, we first transform
Uy, and I; to intermediate representations Uy, and I} by two transfor-
mation functions fy and f7 as Uy, = fy(Uy) and I} = fi(I;). Then,
we further refine the representations by a multi-layer perceptron
(MLP) (¢y for user side, ¢y for item side) to get user and item CF
representations: Py, = ¢y (Uy,), Q! = ¢r(T}).

However, because the transformation layers fi; and f are trained
based on the recommendation error £ which is calculated by
the model output layer R, the long distance from fi; and fj to the
output layer from the view of backpropagation makes it difficult
to learn effective parameters for fyy and f, which can further im-
pact the learning effectiveness of the whole model (the ineffective
learning issue). Hence, to address this, we input high-quality user
and item pretrained CF representations (denoted as P, € RP and

Q; € R™P) from a pretrained CF model to help guide the learning
processing for fiy and f; by setting a similarity constraint to mini-
mize the difference between the intermediate representations U},
and I} and pretrained CF representations P, and Qj:

min [|U}, — Py |2 + 1T} - Q|- (1)

With the similarity constraint, fi; and f; are guided by the final
recommendation error as well as the high-quality pretrained CF
representations, leading to more effective fi; and f7.

Heater can be trained by any popular top-k recommendation loss
function, such as Sum Squared Error (SSE) loss, cross-entropy loss,
or Bayesian Personalized Ranking (BPR) loss [22]. In this paper, we
use SSE loss because most of existing baselines [17, 28, 29, 31, 36]
adopt this loss, and it shows good empirical performance. The
objective function of Heater can be written as:

: _ D . _ n2
min &= > Rui = Ruilf
(u,i)eOUO~

a A
+ 210~ PullE + I, - QillD) + S 101,

where O~ is the negative samples randomly generated based on
O; Ry ; is the ground-truth preference with value 1 if (u,i) € O, 0
otherwise; « is the trade-off weight for similarity constraint; and A
is the trade-off weight for regularization.

Inference. With a trained Heater, it is straightforward to provide
recommendations, which is similar to the training process. The
only difference is that we do not need the similarity constraint and
pretrained CF representations shown in Equation 1, and we only
input the auxiliary representations of cold users and items into the
model. For Task 1 mentioned in Section 2.1 — recommending warm
items to cold users — assume we want to provide recommendation
for the cold user u. All we need is to input all the (Uy,I;) pairs
into Heater to calculate Iéu’i, where i € I,,, and show items with
top scores in descending order to user u. In the same way, we can
generate recommendations for Task 2 and Task 3.

The Heater framework can also be applied to cases where there
is only auxiliary information for users or items (e.g., CiteULike and
LastFM datasets introduced in Section 4.1), and the side (user side
or item side) without auxiliary information is warm side (all users
in the side or all items in the side are warm). During training, the
only modifications needed are first removing the corresponding
similarity constraint for the warm side, and then directly input the
pretrained CF representations Py, (or Q;) as Uy, (or I) to calculate
the final CF representations Py, (or Qj) for the warm side. During in-
ference, similarly, we directly use the pretrained CF representations
as input for the warm side.

2.3 Randomized Training

The introduced similarity constraint in the Heater framework (shown
in Equation 1) is capable to guide the learning of transformation
functions fy and f;, and thus improves the quality of U’ and I’
because the pretrained CF representations are known to be of high
quality. As a result, the Heater framework should have higher model
learning effectiveness than conventional joint-training methods.
However, even if we have the similarity constraint, there is al-
ways information loss between P (or Q) and U’ (or I’) due to the low
quality of auxiliary representations and the structural limitation of
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Figure 3: Randomized Training: during training, randomly
feed pretrained CF representations or transformed auxil-
iary representations alternatively to generate final represen-
tations P;, and Q.

the transformation functions. This will lead to ineffective learning
for ¢y and ¢ due to the low quality of U” and I, and further de-
crease the quality of final CF representations P’ and Q’. To address
this, we propose a Randomized Training strategy, which does not
only feed user and item transformed auxiliary representations U’
and I’ to generate final representations P’ and Q’ during training,
but also uses the pretrained CF representations P and Q in a sto-
chastic way as demonstrated in Figure 3. Note that the proposed
Randomized Training is only for the training and does not influence
the inference process introduced in Section 2.2.

Concretely, first, we need to pre-define a hyper-parameter p €
[0, 1] representing the probability of using pretrained CF repre-
sentations P and Q for training. Then, during the training process,
for a given training sample (u, i), based on p, we randomly choose
whether to use Uy, or Py, to generate P;;, and whether to use I} or
Q; to generate Q]. Note that the random processes of user and item
sides are independent, and they can even have different values of
probability p.

By using both auxiliary representations and pretrained CF rep-
resentations alternatively, we can alleviate the ineffective learning
problem because the high-quality pretrained CF representations
can help guide ¢y and ¢y to learn effective parameters, especially
when U” and I’ are not of high quality. The choice of p depends
on the quality of the auxiliary information. If the auxiliary repre-
sentations contain rich information about the users and items with
limited noise, then we can use a small p, otherwise, we need a large
p to ensure the effectiveness of the model.
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Figure 4: Mixture-of-Experts Transformation: apply T multi-
layer perceptrons as experts to transform auxiliary repre-
sentations, weighted sum outputs of experts as final output.
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Last, we turn to address the unified transformation problem of
existing methods. Recall that previous works apply the same trans-
formation process fy (or f7) to map auxiliary representations into
the CF space for all the users (or all items). In other words, they
assume the relationships between users (or items) in the auxiliary
representation space are the same as the relationships in the CF
space. But this assumption can seldom hold because the auxiliary
information is usually noisy and complex. For example, two users
may have a large distance in the auxiliary representation space
because they have little common information in their profiles, but
they could have similar preference, i.e., small distance in CF space. A
unified transformation function cannot handle this situation. Thus,
an algorithm which is able to assign ‘personalized’ transformations
to different users (or items) is required. As a result, we propose to
adopt Mixture-of-Experts [30] to implement fi; and f; for every
single user and item.

The Mixture-of-Experts Transformation (as shown in Figure 4)
consists of T experts, where each is a MLP, denoted as x//lU e, lﬁ%[
for user side, W{ e x//§ for item side. All of the experts take the
same input Uy, (or I;), and the final output of the Mixture-of-Experts
Transformation is a weighted sum of the outputs of all experts. The
formulation of the user side is:

MoE(Uy) = g1y (Uy) + g2t (Uu) + ...+ gy (Un),  (2)

where g1, 92, ..., gr are the weights for experts, which are calcu-
lated by another one-layer perceptron: g = (W7 U, +b), where
g € RT is the vector consisted of g1, gz, . . ., g7; and ¢ (-) is the acti-
vation function, we use tanh in this work. The reason why we do

Mixture-of-Experts Transformation



not use softmax for the weights is that experts here work in a collab-
orative way rather than an exclusive way, thus every expert should
have an independent weight. And tanh empirically outperforms
softmax. Note that the formulation for the item side is similar.

To better explain the effect of Mixture-of-Experts Transforma-
tion, we assume all experts are linear transformation matrices,
denoted as V?,Vg, .. .,V%.] for user side, V{,Vé, el VIT for item
side. Then, the output of Mixture-of-Experts Transformation for
user u is:

MoE(Uy) = (g1V¥ +g2VY +... + grV)TU,, 3)

where (glng + ngg +...+ gTV¥ ) generates a new transformation
matrix specifically for user u based on her own auxiliary represen-
tation, which achieves our goal that assigning different transfor-
mations to different users (or items). By doing this, the auxiliary
representations U and I can be transformed into the CF space more
effectively than using a unified transformation function. It is also
similar to the idea of applying meta-learning to solve cold start
recommendation [35], which generates a unique logistic regression
model for each user based on her historical interactions and then
applies the logistic regression model on cold start items. Therefore,
the Mixture-of-Experts Transformation can also be viewed as a
meta-learning based method.

3 RELATED WORK

Warm Start Recommendation.

Recommender systems have been studied for many years, with
an early emphasis on explicit rating based recommendation tasks.
Various algorithms based on Collaborative Filtering have been pro-
posed [4, 14, 18, 23-25]. However, since explicit ratings are not as
widespread as implicit feedback (such as clicks or views), implicit
top-k recommendation is receiving increasing attention [10, 11, 16,
20, 22]. Among these, Bayesian Personalized Ranking (BPR) [22] is
one of the most influential ones, which adopts a pair-wise ranking
based loss function. In this paper, we also focus on the implicit
top-k recommendation problem, but aim to provide recommenda-
tions for cold start users and/or items, which is impossible for the
conventional models mentioned above.

Recently, many neural networks based recommendation algo-
rithms are proposed [6, 9, 27, 38-40], which show more promising
performance than traditional models due to the non-linearity and
structural complexity of neural networks. Among these, one break-
through is Neural Collaborative Filtering (NCF) proposed by He et
al. [9], which generalizes matrix factorization by neural networks
and adopts multiple hidden layers and non-linear activation func-
tions, resulting in significant performance improvement. Inspired
by these pioneers, the proposed model in this work is also based
on neural networks and utilizes the neural structure of matrix fac-
torization introduced in NCF.

Cold Start Recommendation.

One inherent drawback of the recommendation algorithms men-
tioned above is that they can not recommend for users or items
without any historical interaction data. However, this cold start
scenario is common in many real-world applications. As discussed
in Section 1, there are two main categories of modern approaches:
separate-training and joint-training methods.

Separate-training methods separate the learning of the CF model
and the transformation from auxiliary representations to CF repre-
sentations. One typical group of methods is to first pretrain a CF
model on the user-item interaction data and generate pretrained
CF representations, then learn the transformation functions based
on the pretrained CF representations. One example is LinMap pro-
posed by Gantner et al. [7], which learns a linear transformation
matrix to map auxiliary representations to pretrained CF repre-
sentations. Another example is DeepMusic [33], which use deep
neural networks to transform music audio signals to pretrained CF
representations. Another group of methods [3, 26, 31] combines
the learning of CF and transformation functions into one model,
but they have their own loss components in the objective function
and a trade off of learning strength between them must be achieved.
For example, CMF proposed by Singh et al. [31] learns a matrix
factorization and a linear transformation function in one model,
whose core idea is similar to LinMap.

Joint-training methods learn CF and transformation functions
jointly to minimize the recommendation error on the user-item
interaction data in one model. A typical example is DropoutNet
proposed by Volkovs et al. [36], which transforms auxiliary repre-
sentations to CF representations by multi-layer perceptions, and
learns the model parameters by minimizing a recommendation
error. Another thread of methods directly learns a transformation
from auxiliary representations to preference scores [17, 28] without
generating any intermediate CF representations, which is inspired
by Autoencoder based CF [27].

Beside these two directions, there are some works adapting the
idea of meta-learning to the cold start recommendation field [15, 35].
Vartak ei al. [35] propose to generate different models for different
users based on their historical preferences, then apply these user-
specific models to auxiliary representations of cold start tweets
to predict user preference towards tweets. Lee et al. [15] build a
recommender that is able to adapt to users or items with very few
interaction records (instead of no feedback as in our work) so that
it can perform well on new users or items. Because [15] is not
the same cold start setting as we discuss in this paper, we do not
compare with it.

4 EXPERIMENTS

In this section, we empirically evaluate the proposed model over
three cold start recommendation tasks and three datasets from
different domains. We aim to answer four key research questions:
RQ1 How does Heater perform compared with state-of-the-art cold
start recommendation models? RQ2 How effective are the proposed
similarity constraint, Randomized Training, and Mixture-of-Experts
Transformation mechanisms? RQ3 What are the impact of three
key hyper-parameters: similarity constraint weight «, Randomized
Training probability p, and number of experts T in Mixture-of-
Experts Transformation? RQ4 What is the impact of the quality
of pretrained CF representations on Heater compared with other
models that also take pretrained representations as input?

4.1 Datasets

Datasets for evaluating cold start recommendation need rich auxil-
iary information for users and items, thus we use three real-world
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Figure 5: Validation and test set splitting for XING dataset.

datasets commonly used to evaluate the three different cold start
recommendation tasks introduced in Section 2.1:

CiteULike [37] is a dataset recording user preferences towards
scientific articles. There are 5,551 users, 16,980 articles and 204,986
user-like-article interactions in the dataset. Besides, we have the
abstracts of the articles as the auxiliary information for the item
side, but there is no auxiliary information for the user side, hence
we evaluate Task 2 on CiteULike. Following the processing of [36],
we first generate an 8,000 dimension feature vector by calculating
tf-idf of top 8,000 words for each item, and then keep the top 300
dimensions after dimensionality reduction by SVD. As a result, we
have a 16,980 X 300 item auxiliary representation I.

LastFM [5] consists of 1,892 users, 17,632 music artists as items
to be recommended, and 92,834 user-listen-to-artist interactions
(rather than the user-tag-artist interactions as used in previous
work [28], because user-listen-to-artist interaction is more general
and the data is sparser). In this dataset, we have the social rela-
tionships between all the users, thus we have a 1,892 X 1, 892 user
auxiliary representation U, but have no auxiliary information for
the item side. Therefore, we evaluate Task 1 on LastFM.

XING [2] is a subset of the ACM RecSys 2017 Challenge dataset,
which contains 106,881 users, 20,519 jobs as items to be recom-
mended to users, and 4,306,183 user-view-job interactions. We have
user profile information such as current job, location and education
level. For items, we have career level, tags, and other related infor-
mation. Following the processing of [36], we have a 106, 881 x 831
user auxiliary representation U and a 20, 519 X 2, 738 item auxiliary
representation I. We evaluate all three tasks on XING.

For CiteULike, we use the same training and test splitting of [36],
but further select 30% of items and all records of them from the test
set in [36] as validation set and the remaining part as our test set.
For LastFM, we randomly select 10% of users and all their records
as the validation set and 30% of items and all their records as the
test set. For XING, as shown in Figure 5, we select cold start users
and cold start items randomly for validation set and test set in the
same way, and generate cold-user, cold-item, and cold-user-item
validation sets and test sets (6 sets in total). The detailed statistics
of the datasets are shown in Table 1.

4.2 Experimental Setup

Metrics. We adopt three different ranking evaluation metrics to
evaluate model performance: Precision@k (P@k), Recall@k (R@k)
and NDCG@k. The detailed definitions of these metrics can be
found in [9, 19]. We report k = {20, 50, 100} in this paper.

Baselines. We consider eight state-of-the-art cold start recommen-
dation algorithms to compare with the proposed model:

KNN [29] generates recommendations by conventional nearest
neighbor algorithm. The user-user or item-item similarity is com-
puted by the given auxiliary representations. This method works
for Task 1 and 2 but not Task 3.

CMF [31] combines matrix factorization and auxiliary repre-
sentations to CF representations transformation together into one
objective function and trains these two parts simultaneously. CMF
works for Task 1 and Task 2 but not Task 3.

LinMap [7] inputs pretrained CF representations and learns
a matrix to transform auxiliary representations to pretrained CF
representations. LinMap can work for all three tasks.

NLinMap is similar to [33], which applies deep neural networks
to extract features from auxiliary representation to transform the
auxiliary representations to CF space. We use a MLP of architecture
300 — 300 — 200 for CiteULike, a MLP of architecture 800 —
400 — 200 for LastFM and XING. All hidden layers have ReLU as
the activation function. NLinMap can work for all three tasks.

LoCo [28] is a linear low-rank regression method, which learns
a low-rank transformation matrix to directly transform auxiliary
representations to final predicted preference scores. It can only
work for Task 1 and 2 but not Task 3.

LWA [35] is a meta-learning based algorithm which constructs
different logistic regression classifiers for different users based on
their historical records. The user-specific logistic regression takes
the auxiliary representation of one cold start item as input and
predicts whether the user will like input item or not. LWA can only
work for Task 2.

DropoutNet [36] inputs both pretrained CF representations
and auxiliary representations into a MLP and randomly dropouts
pretrained CF representations during training. It works for all tasks.

LLAE [17] applies the idea of zero-shot learning to solve cold
start recommendation problems. Similar to LoCo, LLAE also learns
a transformation matrix to directly transform auxiliary representa-
tion to predicted preference scores.

Reproducibility. Code, data, and experimental settings are at
https://github.com/Zziwei/Heater—Cold-Start-Recommendation. We
implement the proposed model by Tensorflow [1] and Adam [12]
optimizer. For the hyper-parameters, we fix the CF latent factor
dimension as 200, and set the learning rate as 0.005, the mini-batch
size as 1024 for all models. Besides, we re-sample negative samples
in each epoch and set the negative sampling rate 5 for all models.
Then we tune other hyper-parameters by grid search on validation
sets. More specifically, for Heater, we set the regularization weight
A =0.0001 for CiteULike and XING, and A = 0.001 for LastFM. We
set the similarity constraint weight & = 0.0001, set the Randomized
Training probability p = 0.5, set the number of experts in Mixture-
of-Experts Transformation as 5, have one hidden layer activated by
tanh of dimension 200 as the expert , and have one hidden layer of
dimension 200 activated by tanh as ¢y and ¢y for all 3 datasets.
Heater and some of the baselines require pretrained CF represen-
tations as input. Hence, we train a Bayesian Personalized Ranking
(BPR) [22] model with latent factors of 200 dimensions, L2 regu-
larization weight 0.001, and learning rate as 0.005 for the three
datasets, and use the learned latent factors of BPR as P and Q.



Training Validation Test
#user  #item  #record density | #user #item #record | #user #item #record
CiteULike 5,551 13,584 164,210 0.22% 5,551 1,018 13,037 5,551 2,378 27,739
LastFM 1,136 12,850 55,810 0.38% 189 12,850 9,209 567 12,850 27,815
XING-U 64,129 12,312 1,549,242 0.20% | 10,688 12,312 258,497 | 32,064 12,312 775,837
XING-I 64,129 12,312 1,549,242 0.20% | 64,129 2,051 275,782 | 64,129 6,156 756,638
XING-UI 64,129 12,312 1,549,242 0.20% | 10,688 2,051 45,807 | 32,064 6,156 379,730

Table 1: Statistics of training, validation and test sets in the three datasets. XING-U represents XING dataset with cold start
users (for Task 1), XING-I represents XING with cold start items (for Task 2), and XING-UI represents XING with both cold

statr users and items (for Task 3).

All experiments are performed on a desktop machine with 32GB
memory, an 8 core Intel i7-4820k 3.7GHz CPU and an Nvidia GeForce
GTX Titan X GPU with 12 GB memory. The runtime of one epoch
for Heater is 7s for CiteUlike, 6s for LastFM, and 4 minutes and 58
seconds for XING. Heater can converge within 100 epochs.

4.3 RQ1: Heater vs. Baselines

We begin by comparing the performance of Heater with eight state-
of-the-art alternatives on three datasets. Recall@k, Precision@k
and NDCG@k (k = {20, 50, 100}) are shown in Table 2. XING-U
represents recommending warm items to cold start users (Task
1) in XING dataset. Similarly, XING-I represents recommending
cold start items to warm users (Task 2), and XING-UI represents
recommending cold start items to cold start users (Task 3). The
best baselines are marked in bold, and the relative improvement
(denoted as A) of Heater over the best baselines are also calculated.
As we can see from the table, for both metrics and all datasets,
Heater is able to outperform other models for different cold start
recommendation tasks. We also calculate the p-value of paired t-test
for the relative improvement rates, showing the improvements are
statistically significant. Note that LWA cannot work for situations
with cold start users, and there is no sufficient memory to run LLAE
on XING. Hence, we do not report results of LWA for LastFM, XING-
U, and XING-UI, and do not report results of LLAE for all three
XING cases. Besides, KNN, CMF, LoCo, LWA and LLAE cannot
work for Task 3, thus we do not report their results for XING-UL

In addition to the outstanding cold start recommendation per-
formance, another advantage of Heater is that it is able to address
all three cold start tasks simultaneously by one time of training.
Unlike LinMap and NLinMap, which have to first solve Task 1 and
Task 2 one by one, then generate cold start recommendations for
Task 3 based on the trained models from Task 1 and Task 2.

4.4 RQ2: Ablation Study

Next, we turn to investigate the effects of different components
of Heater. We compare the complete version of Heater with three
variations: (i) Heater without the similarity constraint (noted as w/o
SC), which puts no constraint on Uy, and on I}; (ii) Heater without
Mixture-of-Experts Transformation (noted as w/o MoET), which
just adopts a linear transformation as the transformation functions
fu and f7; and (iii) Heater without Randomized Training (noted as
w/o RT), which adopts the Heater basic framework as introduced in
Section 2.2 with Mixture-of-Experts Transformation. Table 3 shows
Recall@20, Precision@20, and NDCG@20 of the three models over
all three datasets. Generally, Heater outperforms all variations for
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Figure 6: NDCG@20 comparison between MoE-Map model,
LinMap and NLinMap.

all metrics and all datasets, which indicates that the proposed simi-
larity constraint, Mixture-of-Experts Transformation and Random-
ized Training mechanisms are effective and help to improve the
cold start recommendation quality. Another observation is that for
different datasets and different cold start recommendation tasks,
the performance improvement brought by the similarity constraint,
Mixture-of-Experts Transformation or Randomized Training are dif-
ferent. For instance, for CiteULike, Randomized Training improves
the NDCG@20 by only 1.61% but Mixture-of-Experts Transfor-
mation improves by 10.32% and similarity constraint improves by
8.55%, however, for LastFM, Mixture-of-Experts Transformation
improves only by 0.43% while Randomized Training improves by
4.90% and similarity constraint improves by 55.22%.

Moreover, to further study the effectiveness of Mixture-of-Experts
Transformation, we also implement a variation of NLinMap with
the original MLP replaced by a Mixture-of-Expert Transformation
(with the same structure as it in Heater described in section 4.2).
The variation is denoted as MoE-Map. Comparisons of NDCG@20
between MoE-Map and LinMap and NLinMap are present in Fig-
ure 6. From the figure we can observe that MoE-Map outperforms
LinMap and NLinMap for all cases. As a result, we can conclude
that Mixture-of-Experts Transformation is effective for auxiliary
representation transformation.

4.5 ROQ3: Impact of Hyper-parameters

Next, we study the impact of three hyper-parameters: the similarity
constraint weight «, the Randomized Training probability p, and
the number of experts in Mixture-of-Experts Transformation T.
Similarity constraint weight a.

We first vary the similarity constraint weight « in {0, 5¢ — 6, 1e —
5,2e —5,5e — 5, le — 4, 2e — 4, 5¢ — 4, 1e — 3} and set the other hyper-
parameters as the same as described in Section 4.2. « controls the
strength of similarity constraint and is directly connected with



CiteULike (Task 2) LastFM (Task 1) XING-U (Task 1) XING-I (Task 2) XING-UI (Task 3)
@20 @50 @100 | @20 @50 @100 | @20 @50 @100| @20 @50 @100 | @20 @50 @100
Recall 2192 .3853 5208 | .1354 .2343 3406 | .1222 .2191 3011 | .0732 .1054 .1421 - - -
KNN Precision | .0479 .0359 .0254 | 3065 .2108 .1473 | .1498 .1070 .0739 | .0408 .0244 .0167 - - -
NDCG .1500 2310 .2905 | .3537 .2956  .3625 | .1722 .2154 .2581 | .0740 .0906 .1061 - - -
Recall 2351 4197 5738 | L1152 .2039  .2946 | .2902 4475 5556 | .1631 .2988 4355 | .1118 2180  .3314
LinMap Precision | .0586 .0420 .0297 2500 1776 .1289 | .3502 .2179 .1348 | .0983 .0725 .0528 .0675 .0531 .0405
NDCG 2150 3049 3743 | .2880 .2547 3152 | .3933 4558 4103 | .1605 .2296 .2865 1095 1635  .2115
Recall 2663 4450 5774 | 1319 2203 .2979 | .2472 3934 4901 | .0735 .1948 .3257 - - -
CMF Precision | .0642 .0448 .0299 | .2880 .1922 .1302 | .3003 .1933 .1198 | .0433 .0472 .0396 - - -
NDCG 2289 3219 3822 3332 2833  .3347 | .3488 .4082 4571 | .0628 .1250 .1802 - - -
Recall 2918 5001 6411 1374 2346 3205 | .2464 .3946 5071 | .2070 .3624 .4827 - - -
LoCo Precision | .0695 .0492 .0327 | .3054 .2079 .1421 | .3009 .1939 .1240 | .1263 .0866 .0581 - - -
NDCG .2503 3543 4189 3586 3071 .3646 | 3538 4128 4698 | .2230 .2984 .3495 - - -
Recall 2748 4614 16251 1398 2468 .3462 | .2966 .4496 5533 | .2114 .3665 .5003 .1410 2551 3699
NLinMap | Precision | .0686 0469 0324 | 3065 .2156 .1520 |.3579 .2191 .1344 | .1268 .0879 .0603 | .0859 0620  .0449
NDCG 2641 3585 4295 3535 .3105 .3771 | .4001 .4583 .5147 | .2118 .2891 .3455 .1418 1992 .2469
Recall 3223 4966 .6264 - - - - - - 1976 3446 4813 - - -
LWA Precision | .0773 .0505 .0328 - - - - - - 1196 .0829  .0579 - - -
NDCG .2960 3917 .4524 - - - - - - .2008 .2750 .3316 - - -
Recall 3275 5092 .6518 | .1351 .2371 .3384 | .2417 4219 .5638 | .2215 .3714 .5091 | .1436 .2599 .3780
DropoutNet | Precision | .0770 .0500 .0331 3001 .2097  .1496 | .2921 .2058 .1371 | .1334 .0900 .0619 | .0879 .0637 0464
NDCG .3089 4026 4674 | 3439 3012  .3687 | .2761 .3920 4646 | .2236 .3007 .3589 | .1454 .2052 .2553
Recall 3622 .5313 6434 | .1403 2342 .3221 - - - - - - - - -
LLAE Precision | .0841 .0535 .0335 |.3107 .2072 .1421 - - - - - - - - -
NDCG 3249 4217 4758 | .3658 3092 .3674 - - - - - - - - -
Recall 3727 5533 .6852 | .1451 .2575 .3686 | .3074 .4727 .5810 | .2420 .3984 .5368 | .1609 2895 4113
Heater Precision| .0894 .0552 .0352 |.3221 .2279 .1620 | .3714 .2308 .1413 | .1431 .0956 .0648 | .0973 .0699 .0498
NDCG 3731 4673 5278 | .3705 .3270 .3994 | .4150 .4798 .5345 |.2372 .3171 .3759 | .1566 2211 2720
Recall 2.9%  41%**  51%" |3.4%* 43%" 6.5%|3.6%"* 5.1% 3.1%*|9.3%** 7.3%"* 5.4%|12.0%** 11.4%** 8.8%"*
A Precision | 6.3%"* 3.2%** 5.1%"* |3.7%"* 5.7%"" 6.6%**|3.8%** 5.3%"* 3.1%"*|7.3% 6.2%** 4.7%"*|10.7%** 9.7%** 7.3%**
NDCG |14.8%** 10.8%** 10.9%** | 1.3%* 5.3%** 5.9%"*|3.7%"* 4.7%** 3.8%"*|6.1%* 55%"* 4.7%"| 7.7%" 7.7%"" 6.5%"*

Table 2: Recall@k, Precision@k, and NDCG@k of all baselines and Heater. ‘-’ represents unavailable result: KNN, CMF, LoCo,
LWA and LLAE cannot work for Task 3, thus there is no result for them on XING-UI; LWA cannot work for Task 1 thus there
is no result for LWA on LastFM and XING-U; LLAE run into out-of-memory error on XING dataset thus there is no result of
LLAE on XING-U and XING-I. ** indicates that the relative improvement rates are statistically significant for p < 0.01, * for

p < 0.05 judged by paired t-test.

CiteULike LastFM XING-U XING-I XING-UI
R@20 3727 .1451  .3074 .2420 .1609
Heater P@20 .0894 3221 3714 .1431  .0973
NDCG@20| .3731 3705  .4150 .2372 .1566
R@20 3273 0944 2723 .2092 1252
w/o SC P@20 .0818 2112 3307 1259 .0781
NDCG@20| .3437 .2387  .3595  .2053 1263
R@20 .3406 1431 2856  .2160 .1454
w/o MoET| P@20 .0827 3185 3449 1291 .0890
NDCG@20| .3382 3689 3753 2132 .1434
R@20 3654 1415 2407  .1843 1534
w/o RT P@20 .0887 3095 2946 .1099 .0929
NDCG@20| .3672 3532 3145 1833 1511

Table 3: Recall@20, Precision@20 and NDCG@20 of pro-
posed Heater, Heater w/o similarity constraint, Heater
w/o Mixture-of-Experts Transformation, and Heater w/o
Randomized Training. MoET represents Mixture-of-Experts
Transformation, RT represents Randomized Training.

model effectiveness. For conciseness, we only report results on
CiteULike because the patterns on other datasets show similar
results as CiteULike. NDCG@20 results of Heater on CiteULike are

shown in Figure 7a, where we can observe that with « increasing,
the cold start recommendation quality first improves and then
decreases. This is reasonable because small & causes underfitting
for the auxiliary representation transformation, while large & does
not only give rise to overfitting for the transformation, but also
decreases the ratio of parameters updating due to recommendation
loss. For CiteULike, the best performance is achieved when a =
5e — 5, and for other datasets the best performances are achieved
around the same value.

Randomized Training probability p.

Then, we vary the Randomized Training probability p in the range
of [0.0,1.0] with step 0.1. Our goal is to know how p influences
the randomized training process and how to set a reasonable p
to maximize the effect of Randomized Training. Because experi-
ments on LastFM, XING-U and XING-I show similar patterns as
XING-UI, thus we only plot NDCG@20 results of CiteULike in Fig-
ure 7b and XING-UI in Figure 7c. Generally, with p growing from
0.0 to 1.0, NDCG@100 first increases then decreases, but the peak
performances are different for different datasets: the best metrics
are achieved when p = 0.9 in CiteULike and p = 0.5 in XING-UI
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Figure 7: NDCG@20 results of Heater with different hyper-parameters.

(around 0.5 for other datasets). We can draw two conclusions: (i)
Randomized Training is effective for improving cold start recom-
mendation: when p is within a reasonable range, the performance
improves with p increasing; and (ii) large p is not always helpful
because fyy and f7 are trained less in this case.

Number of experts in Mixture-of-Experts Transformation T.
Last, we investigate the impact of the number of experts T in the
Mixture-of-Experts Transformation. T controls the model complex-
ity of the transformation component, and theoretically larger T
(within reasonable range) is supposed to produce better perfor-
mance. We experiment with T varying from 1 to 10 with step 1, and
the empirical results on three datasets are shown in Figure 7d, 7e
and 7f (XING-U, XING-I and XING-UI show similar patterns, thus
we only show results of XING-UI here). Generally, on all datasets,
with T increasing from 1, the performance improves first and arrives
at a peak. However, the best T for different datasets are different,
which is reasonable because the auxiliary representations in dif-
ferent datasets have distinct characteristics and requires different
degrees of complexity for Mixture-of-Experts Transformation. The
best choice of T is 5 for CiteULike, 6 for LastFM, and 7 for XING-UI.

Another direction of changing the complexity of the Mixture-of-
Experts Transformation is to increase the number of layers in each
expert. But adding more layers dramatically increases the computa-
tional cost, and does not bring much performance improvement,
hence we do not show experimental results here. Besides, we only
use one layer for one expert, thus, we cannot change the model
complexity by changing the hidden layer dimension because it must
be the same as the dimension of pretrained CF representations.

4.6 RQ4: Impact of Pretrained CF Quality.

We last study the impact of the quality of pretrained CF represen-
tations on Heater compared with other models which also take
pretrained CF representations as input. We want to know with bet-
ter pretrained CF representations, does Heater perform better? And
is Heater relatively robust to the change of pretrained CF model

Impact of pretrained CF
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Figure 8: NDCG@20 results on CiteULike of LinMap, NLin-
Map, DropoutNet and Heater with different pretrained CF
representations of varying quality.

compared with other models? For conciseness, we only show re-
sults on CiteULike. Experiments on other datasets show similar
patterns. We generate user and item CF representations by training
BPR on user-item interactions of warm start users and items, and
we fix all hyper-parameters of BPR except the number of training
epochs to generate representations of different qualities. Because
we can only use the training set to train and evaluate BPR, thus we
further split the training set shown in Table 1 into 90% for training,
and 10% for evaluating. Then, with different quality of pretrained
representations, we compare the cold start recommendation perfor-
mance of DropoutNet, LinMap, NLinMap, and Heater. NDCG@20
results on CiteULike are shown in Figure 8, where we involve five
sets of pretrained representations of different qualities, x-axis repre-
sents the NDCG@20 of BPR trained by different numbers of epochs
(6, 8, 12, 16 and 30 epochs respectively, and the epoch number of
experiment in Section 4.3 is 30), y-axis represents the cold start
recommendation performances of models. From this we can ob-
serve that for all pretrained representations of different qualities,
Heater always outperforms alternatives, and as the quality of BPR
increases, the performance of all models improves. Moreover, the
performance of Heater is much more consistent when the quality

Cold Start Performance (NDCG@20)




of BPR representations differs, while other models have a larger
range of performance changes. Note that NDCG@20 of BPR is
lower than that of cold start recommendation performance because
they are under different experiment setups: BPR is evaluated by
recommending 13, 584 items to 5,551 users, cold start models are
evaluated by recommending 2, 378 items to 5, 551 users.

5 CONCLUSIONS

In this work, we propose a novel model called Heater to address the
cold start recommendation problem. There are three innovative fea-
tures of Heater, which are designed to address three key challenges
in existing cold start recommendation algorithms: i) a combined
framework incorporating the structures of separate-training and
joint-training methods to avoid the error superimposition issue
and improve the model effectiveness; ii) the Randomized Training
strategy to further promote quality of model learning; and iii) the
Mixture-of-Experts Transformation mechanism to provide ‘person-
alized’ transformations for users and items. Empirical results on
three public datasets show the performance improvement of Heater
over state-of-the-art alternatives. In the future, we plan to inves-
tigate how to apply some of the ideas of Heater to solve the data
sparsity problem, i.e., improve the recommendation performance
on users or items with limited historical interaction data.
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