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1 INTRODUCTION

Widespread implicit user-item interactions such as user purchases, views, and clicks, have been widely used in
recommender systems (RecSys) with far-reaching impact [5, 6, 12]. However, recent studies [2, 13, 15, 22] show that
these implicit interactions are not necessarily aligned with user preferences. Since the observed interactions are
determined by both user-item relevance and item exposure, learning a model directly from implicit interactions results in
a biased RecSys.

To address this issue, recent works have proposed unbiased recommendation models by applying principles from
Inverse Propensity Scoring (IPS) [13, 15]. These unbiased algorithms can theoretically guarantee to produce unbiased
user-item relevance prediction conditioned on having an unbiased estimation of the propensity (i.e., the user-item
exposure probability). However, these works model this item exposure probability by a power-law function of item
popularity (e.g., using the number of interactions received by an item), which is not an unbiased estimate of the propensity.
The item exposure probability of an item depends on the total number of users who have seen the item, which is a
function of both the observed positive feedback (e.g., clicks) and the unobserved negative feedback. That is, some users
may see an item but not interact with it. This unobserved negative feedback is missing from existing item exposure
methods based on item popularity, and so bias may still be introduced into seemingly unbiased methods.

Therefore, we propose a combinational joint learning framework that is designed to simultaneously learn unbiased
user-item relevance and unbiased propensity. More specifically, we first introduce an unbiased propensity estimation
method that aims to learn the unbiased user-item exposure probability directly from observed user-item interaction
records, rather than assuming a power law distribution. Such an approach has the benefit of learning propensity
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directly from data, sidestepping the disadvantages of heuristic methods used in previous works. Because learning
unbiased relevance and learning unbiased propensity are conditioned on each other, a straightforward way for unbiased
recommendation is to learn both of them via a joint learning model. However, we show how a naïve joint learning
method that iteratively train an unbiased relevance model and an unbiased propensity model can still lead to a special
estimation-training overlap problem, wherein the learning of the relevance and propensity models shares the same
training data, leading to biased results. Hence, we propose a new combinational joint learning framework that jointly
learns multiple unbiased relevance and propensity sub-models from different parts of the training dataset to avoid this
estimation-training overlap problem. We further show how to incorporate residual components trained by the complete
training data to complement these relevance and propensity sub-models, leading to unbiased prediction of user-item
relevance and propensity. By experiments on two real-world datasets, we show how the proposed model improves
existing unbiased recommendation methods with an improvement of 4% on average over the best alternatives.

2 RELATEDWORK

Prior works have studied feedback bias in explicit ratings in RecSys [4, 9, 14, 16, 17, 19–21], especially since people can
be selective for which items to provide ratings [10, 16–19]. As a result, many approaches are inherently biased, with
more accurate predictions for high ratings than for low ratings. To address this, previous works propose to alleviate
bias in terms of both model learning [4, 9, 14, 16, 17, 20, 21, 23] and evaluation metrics [16, 17, 19].

With increasing impact made by implicit RecSys, investigating the bias in implicit feedback is in high demand. Yang
et al. [22] studied the influence of bias in implicit feedback in term of evaluation, showing that conventional evaluation
metrics are biased toward high-exposure items and proposing unbiased metrics based on IPS method. Based on the
IPS method as well, Saito et al. [15] proposed the first unbiased recommendation model to learn unbiased user-item
relevance from biased implicit data. Later, Saito [13] extended the point-wise model in [15] to a pair-wise version,
which delivers improved performance. However, although these existing unbiased methods theoretically guarantee to
generate unbiased recommendation, their reliance on naïve item popularity based estimation of propensity in the IPS
method can still lead to inaccurate and biased recommendation. In this work, we address this issue by the proposed
combinational joint learning method to learn both unbiased relevance and unbiased propensity simultaneously.

3 PROPOSED METHOD

In this section, we introduce a combinational joint learning framework that jointly learns unbiased relevance and
propensity simultaneously. We begin by formalizing the implicit recommendation problem and introducing an unbiased
objective function from previous work to model the unbiased user-item relevance. We then show how to estimate
unbiased propensity – to overcome the hidden bias prevalent in many previous approaches to estimate propensity –
and then provide the details of the combinational joint learning framework.

3.1 Preliminaries

Problem Statement. Suppose we have a user set U = {1, 2, . . . , 𝑁 }, an item set I = {1, 2, . . . , 𝑀}, and a user-
item interaction variable 𝑌𝑢,𝑖 ∈ {0, 1} where 𝑢 ∈ U and 𝑖 ∈ I recording observed interactions (𝑌𝑢,𝑖 = 1) or unknown
interactions (𝑌𝑢,𝑖 = 0). We useD to denote the training data with all observed user-item interactions and some unknown
interactions (by random negative sampling). To model the observed interaction variable, previous works [13, 15, 22]
introduce two hidden variables: the relevance variable 𝑅𝑢,𝑖 ∈ {0, 1} indicating whether user 𝑢 likes item 𝑖 (𝑅𝑢,𝑖 = 1) or
not (𝑅𝑢,𝑖 = 0); and the exposure variable 𝑂𝑢,𝑖 ∈ {0, 1} indicating whether item 𝑖 is exposed to user 𝑢 (𝑂𝑢,𝑖 = 1) or not



(𝑂𝑢,𝑖 = 0). Then, the interaction variable is modeled as: 𝑌𝑢,𝑖 = 𝑅𝑢,𝑖 ·𝑂𝑢,𝑖 , i.e., only if user 𝑢 likes item 𝑖 (𝑅𝑢,𝑖 = 1) and 𝑖
is exposed to 𝑢 (𝑂𝑢,𝑖 = 1), can we observe 𝑌𝑢,𝑖 = 1. Hence, the task of unbiased implicit RecSys is to infer user-item
relevance 𝑅𝑢,𝑖 and provide ranked lists of items to users based on the observed interaction variable 𝑌𝑢,𝑖 .

Unbiased Objective Function via IPS. To model the relevance variable 𝑅𝑢,𝑖 , we can have the ideal objective func-
tion [15] : L𝑖𝑑𝑒𝑎𝑙 =

∑
(𝑢,𝑖) ∈D 𝑅𝑢,𝑖 (𝑙𝑜𝑔(𝑅𝑢,𝑖 )) + (1−𝑅𝑢,𝑖 ) (𝑙𝑜𝑔(1−𝑅𝑢,𝑖 )), where 𝑅𝑢,𝑖 is the predicted relevance probability

for user 𝑢 to item 𝑖 , which can be formulated as a matrix factorization model: 𝑅𝑢,𝑖 = 𝜎 (P⊤𝑢 · Q𝑖 ) with P𝑢 as the user
latent factors, Q𝑖 as the item latent factors, and 𝜎 (·) as the Sigmoid function. Note that here we adopt cross entropy,
but other loss functions can be selected as well.

However, in practice, 𝑅𝑢,𝑖 is unobservable. That is, we can only observe the interaction variable𝑌𝑢,𝑖 that conflates both
relevance and exposure. Conventional algorithms [3, 8, 11, 12] directly replace 𝑅𝑢,𝑖 inL𝑖𝑑𝑒𝑎𝑙 by𝑌𝑢,𝑖 , which is problematic
because it will lead to the learned 𝑅𝑢,𝑖 combining both relevance 𝑅𝑢,𝑖 and exposure 𝑂𝑢,𝑖 (because 𝑌𝑢,𝑖 = 𝑅𝑢,𝑖 · 𝑂𝑢,𝑖 )
to generate biased recommendations. Hence, to address this problem, previous work [15] adopts Inverse Propensity
Scoring (IPS), leading to the following unbiased objective function:

L𝐼𝑃𝑆 =
∑

(𝑢,𝑖) ∈D

𝑌𝑢,𝑖

𝜃𝑢,𝑖
(𝑙𝑜𝑔(𝑅𝑢,𝑖 )) + (1 −

𝑌𝑢,𝑖

𝜃𝑢,𝑖
) (𝑙𝑜𝑔(1 − 𝑅𝑢,𝑖 )), (1)

where all variables 𝑌𝑢,𝑖 , 𝑅𝑢,𝑖 , 𝑂𝑢,𝑖 are assumed to be Bernoulli variables as 𝑃 (𝑌𝑢,𝑖 = 1) = 𝛾𝑢,𝑖 · 𝜃𝑢,𝑖 , 𝛾𝑢,𝑖 = 𝑃 (𝑅𝑢,𝑖 = 1)
and 𝜃𝑢,𝑖 = 𝑃 (𝑂𝑢,𝑖 = 1). It is straightforward to show E[L𝐼𝑃𝑆 ] = E[L𝑖𝑑𝑒𝑎𝑙 ] (for details, please refer to [15]). Thus, by
minimizing L𝐼𝑃𝑆 , we can have unbiased recommendation.

3.2 Unbiased Propensity Estimation

We call the parameter 𝜃𝑢,𝑖 (the probability of exposing item 𝑖 to user𝑢) the propensity in the IPS method. This propensity
is estimated by a power-law function of item popularity (the number of interactions received by each item) in [13, 15, 22]:

𝜃∗,𝑖 = (
∑
𝑢∈U

𝑌𝑢,𝑖/𝑚𝑎𝑥𝑖∈I (
∑
𝑢∈U

𝑌𝑢,𝑖 ))𝜂 . (2)

However, the power-law function of item popularity is itself not an unbiased estimation of the exposure probability:
item popularity only considers the observed positive user-item interactions, but item exposure is determined by both
observed positive interactions and unobserved negative feedback. That is, users may see an item but not interact with
it. As a result, bias may still be introduced into seemingly unbiased methods such as in Equation 1.

Hence, we propose an unbiased propensity estimation method that aims to learn (i) the trade-off between the item
popularity of positive and negative interactions; and (ii) the relative popularity for unobserved negative interactions.
Such an approach has the added side benefit of learning propensity directly from data, sidestepping the challenge of
tuning the exponent hyper-parameter 𝜂 accurately for every new dataset.

Because all of 𝑌𝑢,𝑖 , 𝑅𝑢,𝑖 , and 𝑂𝑢,𝑖 are Bernoulli variables as introduced in Section 3.1, the unbiased objective function
for modeling 𝑂𝑢,𝑖 is symmetric to the unbiased objective function for 𝑅𝑢,𝑖 in Equation 1. Thus, by replacing 𝜃𝑢,𝑖 with
𝛾𝑢,𝑖 and replacing 𝑅𝑢,𝑖 with 𝑂𝑢,𝑖 in Equation 1, we have the Inverse Relevance Scoring objective function:

L𝐼𝑅𝑆 =
∑

(𝑢,𝑖) ∈D

𝑌𝑢,𝑖

𝛾𝑢,𝑖
(𝑙𝑜𝑔(𝑂𝑢,𝑖 )) + (1 −

𝑌𝑢,𝑖

𝛾𝑢,𝑖
) (𝑙𝑜𝑔(1 −𝑂𝑢,𝑖 )), (3)

where 𝑂𝑢,𝑖 is the predicted exposure probability, i.e., the estimation of the propensity 𝜃𝑢,𝑖 . Concretely, we model 𝑂𝑢,𝑖

by an item-based model: 𝑂𝑢,𝑖 = (𝑤 · 𝑎 + (1 −𝑤) · 𝐾𝑖 )𝑒 , where 𝑤 = 𝑓𝑤 (Q𝑖 ), 𝑎 = 𝑓𝑎 (Q𝑖 ), 𝑒 = 𝑓𝑒 (Q𝑖 ); 𝑓𝑤 (·), 𝑓𝑎 (·), 𝑓𝑒 (·)



Algorithm 1: Training algorithm.
1 repeat
2 for D𝑐 in {D1, . . . ,D𝐶 } do
3 for (𝑢, 𝑖) in D𝑐 do
4 Calculate 𝛾𝑢,𝑖 and 𝜃𝑢,𝑖 by Ψ𝑐 and Φ𝑐 ;
5 Update {Ψ1, . . . ,Ψ𝐶 } \ Ψ𝑐 by Equation 1, and update {Φ1, . . . ,Φ𝐶 } \ Φ𝑐 by Equation 3;
6 with {Ψ1, . . . ,Ψ𝐶 } and {Φ1, . . . ,Φ𝐶 } fixed:
7 Update {Ψ1, . . . ,Ψ𝐶 } by Equation 1 with 𝑅𝑢,𝑖 calculated by {Ψ1 + Ψ1, . . .Ψ𝐶 + Ψ𝐶 };
8 Update {Φ1, . . . ,Φ𝐶 } by Equation 3 with 𝑂𝑢,𝑖 calculated by {Φ1 + Φ1, . . . ,Φ𝐶 + Φ𝐶 };

9 until converge;

are three one layer perceptrons activated by a Sigmoid function with the item latent vector as input and a probability
scalar as output; 𝐾𝑖 =

∑
𝑢∈U 𝑌𝑢,𝑖/𝑚𝑎𝑥𝑖∈I (

∑
𝑢∈U 𝑌𝑢,𝑖 ) is the relative item popularity. We adopt the same power-law

function as previous works [13, 15, 22] do in Equation 2, but set the exponent as a learnable parameter by 𝑒 = 𝑓𝑒 (Q𝑖 ). In
essence, 𝑎 = 𝑓𝑎 (Q𝑖 ) aims to learn the relative popularity for unobserved negative interactions for items and𝑤 = 𝑓𝑤 (Q𝑖 )
learns the trade-off between the popularity of positive and negative interactions. Moreover, we can view the propensity
estimation in Equation 2 as a special case of our item-based propensity model when𝑤 = 0 and 𝑒 = 𝜂.

3.3 Combinational Joint Learning Framework

Up to now, we have objective functions in Equation 1 for learning unbiased user-item relevance probability given
we know the propensity (user-item exposure probability), and we also have the objective function in Equation 3 for
learning unbiased propensity given we know the user-item relevance probability.

Naïve Joint Learning Method and Estimation-training Overlap Problem. Therefore, a straightforward idea is to
combine them together in one model and jointly learn both of them. Concretely, assume we have a relevance model
Ψ = {P,Q} and a propensity model Φ = {𝑓𝑤 , 𝑓𝑎, 𝑓𝑒 }. For one observed user-item interaction (𝑢, 𝑖) ∈ D, we can first fix
the propensity model Φ, and use the prediction 𝑂𝑢,𝑖 of Φ as the propensity in Equation 1 to update the relevance model
Ψ; then fix Ψ and update Φ based on Equation 3 with the prediction 𝑅𝑢,𝑖 of Ψ as the relevance probability.

However, such a naïve method faces the estimation-training overlap problem. That is, the user-item pairs for training
and propensity estimation (or relevance estimation) overlap with each other. More specifically, for a random user-item
pair (𝑢, 𝑖) in D, we can use it to train the relevance model Ψ, and then use 𝑅𝑢,𝑖 by Ψ as the relevance probability 𝛾𝑢,𝑖 in
Equation 3 to update the propensity model Φ. This is problematic because Ψ has been trained by (𝑢, 𝑖), so that 𝛾𝑢,𝑖 = 𝑅𝑢,𝑖
becomes the probability of 𝑢 liking 𝑖 given 𝑢 has already provided positive feedback to 𝑖 . Hence, 𝛾𝑢,𝑖 will be predicted as
1 by Ψ, which violates the definition of 𝛾𝑢,𝑖 as the probability parameter for the Bernoulli variable 𝑅𝑢,𝑖 . Similarly, using
𝑂𝑢,𝑖 by Φ, which is trained by (𝑢, 𝑖), as the propensity 𝜃𝑢,𝑖 for updating Ψ brings the same problem.

Combinational Joint Learning. To address this problem, we propose a combinational joint learning framework,
which separately learns unbiased relevance model Ψ and unbiased propensity model Φ by different data samples. The
key idea is to split the training data into multiple chunks, and have multiple relevance sub-models and propensity
sub-models so that the data chunks used for training any one of them and the chunks they predict relevance and
propensity for do not overlap. Formally, we randomly divide the original training data D into 𝐶 chunks with the
same size: {D1, . . . ,D𝐶 }, 𝐶 is a predefined combination hyper-parameter. Then, we define 𝐶 relevance and propensity



sub-models: {Ψ1, . . . ,Ψ𝐶 } and {Φ1, . . . ,Φ𝐶 }. Each of the relevance sub-models and the propensity sub-models has the
same structure as the conventional relevance and propensity model Ψ = {P,Q} and Φ = {𝑓𝑤 , 𝑓𝑎, 𝑓𝑒 }. During training,
for the 𝑐-th relevance and propensity sub-models Ψ𝑐 and Φ𝑐 , we will use all data chunks except D𝑐 to update them,
and output 𝑅𝑐

𝑢,𝑖
by Ψ𝑐 and 𝑂𝑐

𝑢,𝑖
by Φ𝑐 as the relevance probability 𝛾𝑢,𝑖 and propensity 𝜃𝑢,𝑖 for user-item pairs in D𝑐 for

training other sub-models. And 𝛾𝑢,𝑖 and 𝜃𝑢,𝑖 for chunks except D𝑐 for training Ψ𝑐 and Φ𝑐 are provided by the other
𝐶 − 1 relevance and propensity sub-models. For example, Φ1 and Ψ1 are trained by {D2, . . . ,D𝐶 } with 𝛾𝑢,𝑖 and 𝜃𝑢,𝑖
provided by {Φ2, . . . ,Φ𝐶 } and {Ψ2, . . . ,Ψ𝐶 } correspondingly, and Φ1 and Ψ1 output 𝜃𝑢,𝑖 and 𝛾𝑢,𝑖 for D1 for the training
process of other sub-models. In this way, data for training and propensity estimation (or relevance estimation) does not
overlap for all of the sub-models.

Yet, there is another issue. Each of the sub-models is only trained by partial training data (𝐶 − 1 chunks), leading to
information loss and compromised performance even if we average all sub-models as the final output. Hence, we further
introduce a residual component to complement each sub-model. For example, for sub-models Ψ𝑐 = {P𝑐 ,Q𝑐 } and Φ𝑐 =

{𝑓 𝑐𝑤 , 𝑓 𝑐𝑎 , 𝑓 𝑐𝑒 } we have the residual components Ψ𝑐 = {P𝑐 ,Q𝑐 } and Φ𝑐 = {𝑓 𝑐𝑤 , 𝑓 𝑐𝑎 , 𝑓 𝑐𝑒 }, and add the residual components
to the original sub-models as the final models for output: Ψ′

𝑐 = {P𝑐 + P𝑐 ,Q𝑐 +Q𝑐 } and Φ′
𝑐 = {𝑓 𝑐𝑤 + 𝑓 𝑐𝑤 , 𝑓 𝑐𝑎 + 𝑓 𝑐𝑎 , 𝑓 𝑐𝑒 + 𝑓 𝑐𝑒 }.

The residual component is trained by the complete D with sub-models fixed, and the relevance and propensity are
provided by all the sub-models. The training algorithm is shown in Algorithm 1. Last, after training, by averaging the
output of {Ψ′

1 . . .Ψ
′
𝐶
} and {Φ′

1 . . .Φ
′
𝐶
}, we have the final unbiased relevance and propensity predictions.

4 EXPERIMENTS

We conduct experiments on two real-world datasets to answer three research questions: RQ1 How does the proposed
method perform compared with state-of-the-art alternatives? RQ2 How effective is the estimated propensity? and RQ3
What is the impact of the combination hyper-parameter 𝐶 and of the residual components in the proposed model?

4.1 Experimental Setup

Datasets. To evaluate unbiased recommendation, we need datasets with items uniformly exposed to users so that we can
directly evaluate user-item relevance without influence of exposure. Thus, we use the Yahoo and Coat datasets, which
are the only two publicly available datasets containing separate test sets where users provide feedback to uniformly
drawn samples of items. Yahoo! R3 (https://webscope.sandbox.yahoo.com/) contains over 300K ratings (1 to 5) from
15.4K users to 1K songs in the training set (a biased training set). Besides, an unbiased test set is collected by sampling
a subset of 5.4K users, each of whom is randomly assigned 10 songs, and asked to provide ratings to these random
items. Following the preprocessing procedure in [22], we regard ratings ≥ 4 as positive feedback, and we randomly
split 10% of the training set to be a biased validation set. Coat Shopping [16] contains around 7K ratings (1 to 5) from
290 users to 300 coats in the training set (a biased training set). Similar to the Yahoo dataset, the Coat dataset also has
an unbiased random test set by asking all 290 users to provide ratings to 16 randomly selected coats.

Metrics. Following [13, 15], we adopt three widely used implicit recommendation evaluation metrics – DCG@k

(Discounted Cumulative Gain) and MAP@k (Mean Average Precision). The detailed formulations can be found in
[13, 15]. We report results with 𝑘 = 1, 2, 3 since the number of candidate items for ranking is small in the test set. We
rank the 10 exposed items for each user in the Yahoo dataset, and 16 items in the Coat dataset.

Combinational Approaches.We evaluate combinational joint learning for both a point-wise version (CJMF) and a
pair-wise variation (CJBPR). CJBPR uses the unbiased Bayesian Personalized Ranking (BPR) loss proposed by [13] for

https://webscope.sandbox.yahoo.com/


Table 1. Recommendation performance comparison, where best baselines are marked by underlines.

Point-wise models Pair-wise models
MF

-RMSE
MF
-CE

RelMF
-RMSE

RelMF
-CE NJMF CJMF Δ BPR UBPR CJBPR Δ

Yahoo
DCG

@1 0.5314 0.5275 0.5364 0.5339 0.5403 0.5610 4.58% 0.5409 0.5433 0.5648 3.96%
@2 0.7297 0.7385 0.7353 0.7398 0.7434 0.7746 4.71% 0.7451 0.7493 0.7750 3.42%
@3 0.8520 0.8582 0.8595 0.8616 0.8678 0.8960 4.00% 0.8672 0.8777 0.8972 2.22%

MAP
@1 0.5314 0.5275 0.5364 0.5339 0.5403 0.5610 4.58% 0.5419 0.5433 0.5648 3.96%
@2 0.6189 0.6178 0.6203 0.6220 0.6256 0.6475 4.09% 0.6263 0.6295 0.6496 3.19%
@3 0.6420 0.6419 0.6433 0.6465 0.6486 0.6694 3.54% 0.6491 0.6532 0.6721 2.88%

Coat
DCG

@1 0.5305 0.5485 0.5485 0.5612 0.5696 0.5907 5.26% 0.5316 0.5738 0.5907 2.94%
@2 0.7608 0.7695 0.7881 0.7848 0.7949 0.8223 4.34% 0.7739 0.7868 0.8223 4.51%
@3 0.9190 0.9298 0.9337 0.9367 0.9431 0.9679 3.33% 0.9300 0.9387 0.9595 2.21%

MAP
@1 0.5305 0.5485 0.5485 0.5612 0.5696 0.5907 5.26% 0.5316 0.5738 0.5907 2.94%
@2 0.6118 0.6203 0.6371 0.6435 0.6477 0.6709 4.26% 0.6181 0.6392 0.6709 4.95%
@3 0.6255 0.6399 0.6498 0.6494 0.6572 0.6741 3.73% 0.6378 0.6596 0.6818 3.36%

the relevance model, and uses the same propensity loss in Equation 3 for the propensity estimation. Since the output of
the relevance model 𝑅𝑢,𝑖 in CJBPR is not a probability, for a user 𝑢, we further use a softmax function on 𝑅𝑢,∗ to have a
multinomial distribution for predicted scores and then divide the scores by the maximum score in the multinomial
distribution to transform scores to relevance probabilities 𝛾𝑢,∗ in Equation 3.

Baselines. For fair comparison, we compare CJMF with point-wise baselines, and compare CJBPR with pair-wise
baselines. For point-wise baselines, we use the following biased models:MF-RMSE [8], the most commonly used matrix
factorization model for implicit RecSys with RMSE loss;MF-CE, a variation of MF-RMSE adopting cross entropy loss (to
have a fair comparison with CJMF that also uses cross entropy loss). We also consider the following unbiased baselines:
RelMF-RMSE [15], an unbiased model adopting the IPS approach and the RMSE loss; RelMF-CE is a variation of
RelMF-RMSE which adopts cross entropy loss to have a fair comparison with the proposed CJMF. For pairwise baselines,
we adopt the biased BPR [12] model and UBPR [13], an unbiased version of BPR which also uses the IPS approach.

All point-wise and pair-wise unbiased baselines [13, 15] use the power-law function of item popularity introduced
in Equation 2 with 𝜂 = 0.5 (the same as in the original papers [13, 15]) as propensity. We also adopt the propensity
clipping approach [13, 15] to reduce the variance for all unbiased baselines and also our proposed models.

Reproducibility.We implement the proposed models based on Tensorflow [1] and use Adam [7] optimizer. We set the
learning rate as 0.001, the batch size as 1024, the latent dimension as 100, and the negative sampling rate as 5 for all
models and datasets. For other hyper-parameters, we tune them by grid search on the biased validation sets with the
self-normalized inverse propensity scoring (SNIPS) estimator [22] as the performance indicator. More specifically, we set
𝐶 = 8 for both Yahoo and Coat datasets for CJMF and set 𝐶 = 6 for CJBPR. Since the proposed CJMF and CJBPR adopt
the combinational joint learning method leading to more model parameters than baselines, to have a fair comparison, we
run point-wise baselines for 16 times (run pair-wise baselines for 12 times) and average their outputs as final predictions.
Code, data, and experimental settings are at https://github.com/Zziwei/Unbiased-Propensity-and-Recommendation.

4.2 RQ1: Comparing Recommendation Performance

We begin by investigating the recommendation performance of the proposed CJMF and CJBPR approaches compared
with corresponding point-wise and pair-wise baselines. Detailed results for all models are shown in Table 1. First,
comparing among point-wise models and among pair-wise models, we observe that the proposed CJMF and CJBPR
can significantly outperform corresponding baselines (the best baselines are marked by underlines in Table1), which
indicates that the proposed combinational joint learning approach is effective for unbiased implicit recommendation.



Second, we also implement the naïve joint learning model (denoted as NJMF in Table 1) introduced in Section 3.3 which
has the estimation-training overlap issue. From the table we observe that CJMF produces better recommendation results
than NJMF, demonstrating the effectiveness of the proposed combinational joint strategy over the naïve approach. Last,
by comparing CJMF and CJBPR, we find that results of CJBPR are better than CJMF but the difference is small, which is
not as obvious as the difference between conventional MF and BPR. Since the propensity and the relevance are modeled
differently in CJBPR (the propensity is modeled as probabilities while relevance is modeled as real-number scores), we
see some limits to the effectiveness of the joint learning. We leave further study along this line to future work.

4.3 RQ2: Investigating the Effectiveness of Estimated Propensity

Fig. 1. Comparing unbiasedmodels with item popularity as propen-
sity and with estimated propensity from proposed models.

Next, we study the effectiveness of the estimated propen-
sity by comparing the performance of three unbiased
baselines using Equation 2 as propensity estimation ver-
sus using 𝑂𝑢,𝑖 predicted by CJMF and CJBPR as propen-
sity estimation. Results presented in Figure 1 show that
for both datasets, the two variations of RelMF can perform
better if use the estimated propensity from CJMF. The
same conclusion can be drawn that with the estimated
propensity from CJBPR, UBPR can perform better.

4.4 RQ3: Investigating the Impact of Hyper-parameter 𝐶 and Residual Component

Fig. 2. DCG@3 of CJMF and CJMF without residual components
on the Yahoo dataset, with varying𝐶 .

Finally, we investigate the impact of the combination
hyper-parameter 𝐶 on CJMF. We vary 𝐶 from 2 to 16 and
show the results of CJMF as the red line in Figure 2. We see
that the performance of CJMF improves rapidly then con-
verges as 𝐶 increases, reaching a peak level when 𝐶 ≥ 5.

Then, we study the effect of the residual components.
We denote the variation of CJMF without the residual
component as CJMF-noRes, which directly averages the
output of all sub-models as the final prediction of the complete model. The 𝐷𝐶𝐺@3 results of CJMF-noRes are plotted
in Figure 2 as the blue lines. We observe the effectiveness of the residual components by comparing with the complete
model (the red lines in the figure). Note that CJBPR has similar patterns as CJMF demonstrated in Figure 2.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose a combinational joint learning framework, which jointly learns unbiased relevance and
propensity simultaneously, to produce unbiased recommendations based on biased implicit data. Extensive experiments
on two public datasets show the effectiveness of the proposed method. There are two lines of future work: i) investigate
how to more effectively adapt the combinational joint learning framework to pair-wise algorithms; and ii) study how to
design user-item based propensity models to connect propensity estimation with both users and items.
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