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Introduction Dynamic Recommendation
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* Proposed a simple but powerful dynamic debiasing framework to adapt
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 Closed Feedback Loop: The feedback

Compared with less popular items, whether : : : .
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Debias in a dynamic way

* Adopt an existing static debiasing method, apply it to dynamic recommendation process by
gradually increasing debiasing strength.

Experimental Results

» With increasing debiasing strength, we can continuously * Integrate DScale and false positive correction, the

D o . decrease the bias :  popularity bias is further decreased;
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A(SCQIed) A(model) /( bias starts low but grows to high level. method (higher recommendation utility is achieved).
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 Adopt an existing static debiasing method, apply it to dynamic recommendation process by DScale: 68,645 FPC-DScale: 73,145

gradually increasing debiasing strength.
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