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Popularity Bias in Dynamic Recommendation

Dynamic Recommendation

Popularity Bias
Compared with less popular items, whether 
popular items are more likely to be correctly 
recommended to matched users who like 
them?

→ Calculate Gini Coefficient of matched 
exposure (i.e., true positive rate) over items 
sorted by popularity. (higher, more severe 
bias)

Empirical Study of Popularity Bias in Dynamic Recommendation

Debias in a dynamic way Experimental Results

• With increasing debiasing strength, we can continuously 
decrease the bias

• Fix the debiasing strength as static debiasing method, the 
bias starts low but grows to high level.

Introduction
Prior works study the long-standing problem of popularity bias in RecSys in 
a static setting, where bias is analyzed by conducting a single round of 
recommendation. There is a significant research gap in our understanding of 
the dynamics of the popularity bias in a real-world dynamic
recommendation process.

Contributions:
• Conduct a comprehensive empirical study by simulation experiments to 

investigate how the popularity bias evolves in dynamic recommendation 
and how four key bias factors impact the bias;

• Proposed a simple but powerful dynamic debiasing framework to adapt 
exiting static debiasing methods to the dynamic scenario;

• Extensive experiments to show the effectiveness of the proposed dynamic 
debiasing method.

• Inherent Audience Size Imbalance: A 
few items have very large audience 
sizes, while the majority have small 
ones.

• Model Bias: The model itself amplify 
any imbalances in the data it ingests for 
training.

• Position Bias: Once the model makes 
recommendations, the top-ranked items 
are more likely to be examined by 
users. 

• Closed Feedback Loop: The feedback 
collected from recommendations by the 
current model will impact the training of 
future versions of the model.

• Evolution of popularity bias: • Impact of position bias: • Impact of closed feedback 
loop:

• Impact of model bias: • Inherent audience size 
imbalance and model bias are the 
main sources of popularity bias; 

• Position bias and closed 
feedback loop can intensify the 
bias when inherent audience size 
imbalance and model bias exist;

• Higher training data density and 
greater imbalance can increase 
the effect of model bias.

• Adopt an existing static debiasing method, apply it to dynamic recommendation process by 
gradually increasing debiasing strength.

Example: an existing debiasing method Scale

• Adopt an existing static debiasing method, apply it to dynamic recommendation process by 
gradually increasing debiasing strength.

MF: 67,816
Scale: 66,630
DScale: 68,645

• Integrate DScale and false positive correction, the 
popularity bias is further decreased;

• More clicks are collected by debiasing by the proposed 
method (higher recommendation utility is achieved).

MF: 67,816
DScale: 68,645
FPC-DScale: 73,145


