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Recommenders	– Essential	Conduits
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Algorithmic	Bias	in	Recommenders



Unfair	Recommenders
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News	Recommendation

Refer to: Dan	Bernhardt,	Stefan	Krasa,	and	Mattias Polborn.	2008.	Political	polarization	and	the	electoral	effects	of	media	bias.	Journal	of	Public	Economics	92,	5-6	(2008),	1092–1104.	

Political	Ideology

Political	Ideology

News
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Refer to: L.	Sweeney.	2013.	Discrimination	in	online	ad	delivery.	Queue	11,	3	(2013),	10.	
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Refer to: Ayman Farahat and Michael C Bailey. 2012. How effective is targeted advertising?. In Proceedings of the 21st international conference on World Wide Web. ACM, 111– 120. 
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Goal

To	enhance	recommendation	fairness	while	preserving	recommendation	quality.



Motivating	Example:	Expert	Recommendation
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…Users

Experts

Topics

Recommend experts to users related to different topics based on
historical user-expert interactions.
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A twitter user is recognized as an expert related to a specific topic when
he is added into a Twitter List with the topic name by another user.

In	a	list

List	creator List	name

Motivating	Example:	Expert	Recommendation



Motivating	Example:	Expert	Recommendation
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A twitter user is recognized as an expert related to a specific topic when
he is added into a Twitter List with the topic name by another user.

Experts

User Topic



Motivating	Example:	Expert	Recommendation
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…

• We	observed	that	distributions	of	liked	experts	with	distinct	genders and	
races are	different.

• We	care	about	recommendation	fairness between	different	genders	or	
races.

4 9 6 8



Question
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How	to	define	fairness	for	recommendation	task?



Statistical	Parity
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Statistical	parity	encourages	a	recommender	to	ensure	similar	
probability	distributions	for	both	groups.

𝑃 𝑅 𝑚𝑎𝑙𝑒 = 𝑃[𝑅|𝑓𝑒𝑚𝑎𝑙𝑒]

Unfair	Example Fair	Example
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Challenges

Existing	approaches:
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Challenges

Existing	approaches:

i. focus	on		two-dimensionalmatrix	completion;	(we	have	user-expert-
topic)



10/17/18 16

Challenges

Existing	approaches:

i. focus	on		two-dimensionalmatrix	completion;	(we	have	user-expert-
topic)

ii. assume	there	is	only	a	single	binary	sensitive	feature	(gender:	female	
vs.	male);	(we	want	to	enhance	sensitive	feature	of	both	gender	and	
ethnicity,	or	even	more)
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Challenges

Existing	approaches:

i. focus	on		two-dimensionalmatrix	completion;	(we	have	user-expert-
topic)

ii. assume	there	is	only	a	single	binary	sensitive	feature	(gender:	female	
vs.	male);	(we	want	to	enhance	sensitive	feature	of	both	gender	and	
ethnicity,	or	even	more)

iii. trade-off	considerable	recommendation	quality	for	improving	fairness.	
(we	want	satisfactory	recommendation	utility)
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Proposed	Model	– FATR
Fairness-Aware	Tensor-based	Recommendation:
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Proposed	Model	– FATR
Fairness-Aware	Tensor-based	Recommendation:

i. leverages	tensor	completion	as	the	foundation	that	models	multiple	
aspects	simultaneously;

user

topic

♀♂

expert

Biased	Historical	Feedbacks
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Proposed	Model	– FATR
Fairness-Aware	Tensor-based	Recommendation:

ii. uses	a	new	sensitive	latent	factor	matrix	for	isolating	sensitive	features	
that	naturally	adapt	to	multi-feature and	multi-category cases;

Sensitive	Latent	
Factor	Matrix

Sensitive	features	
isolating

user

topic

♀♂

expert

Biased	Historical	Feedbacks
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Proposed	Model	– FATR
Fairness-Aware	Tensor-based	Recommendation:

iii. utilizes	a	sensitive	information	regularizer for	extracting	sensitive	
information	tainting	other	latent	factors	that	promises	fairness	
enhancement	and	recommendation	quality	preserving.

Fairness-Aware	
Recommendation

Sensitive	Latent	
Factor	Matrix

Sensitive	features	
isolating

Sensitive	information	
regularizer

user

topic

Sensitive	information	
extracting

♀♂

expert

♀♂

Biased	Historical	Feedbacks
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Proposed	Model	– FATR
Fairness-Aware	Tensor-based	Recommendation:

i. tensor	completion;

ii. sensitive	latent	factor	matrix;

iii. sensitive	information	regularizer.

Fairness-Aware	
Recommendation

Sensitive	Latent	
Factor	Matrix

Sensitive	features	
isolating

Sensitive	information	
regularizer

user

topic

Biased	Historical	Feedbacks

Sensitive	information	
extracting

♀♂

expert

♀♂
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Proposed	Model	– FATR

FART	can	adapt	to	other	domains	with	two,	three	or	even	more	
dimensions,	not	limited	in	the	given	expert	recommendation	task.

Jobs

News Movies
Books

…
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Conventional	Tensor	Completion

user

topic

Biased	Historical	
Feedbacks

♀♂

expert
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Conventional	Tensor	Completion

(⨀ is	Khatri-Rao	product)

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀
user

topic

Biased	Historical	
Feedbacks

♀♂

expert

⨀
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Conventional	Tensor	Completion

(⨀ is	Khatri-Rao	product)

Unfair	
Recommendation

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀
user

topic

Biased	Historical	
Feedbacks

♀♂

expert

⨀
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Conventional	Tensor	Completion

(⨀ is	Khatri-Rao	product)

Unfair	
Recommendation

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀
user

topic

Biased	Historical	
Feedbacks

♀♂

expert

⨀

Information	related	to	sensitive	features
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Conventional	Tensor	Completion

(⨀ is	Khatri-Rao	product)

Unfair	
Recommendation

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀
user

topic

Biased	Historical	
Feedbacks

♀♂

expert

⨀

Sensitive	Information
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Intuition

(⨀ is	Khatri-Rao	product)

Fair	
Recommendation

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀
user

topic

Biased	Historical	
Feedbacks

♀♂

expert

⨀

Sensitive	Information

Remove	Sensitive	Information Enhance	Fairness
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Sensitive	Feature	Isolation

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀ ⨀

(⨀ is	Khatri-Rao	product)

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Sensitive	feature	vectors
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Sensitive	Feature	Isolation

user	attitude	towards	
different	groups	of	experts

characteristics	of	different	
groups	of	experts	for	topic

User	latent	
factor	matrix	

Topic	latent	
factor	matrix	

Expert	latent	
factor	matrix	

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Sensitive	feature	vectors
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Sensitive	Feature	Isolation

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices
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Sensitive	Feature	Isolation

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Dimensions
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Sensitive	Feature	Isolation

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Dimensions
Exclusively	related	to	the	Sensitive	Information
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Sensitive	Feature	Isolation

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Non-sensitive	Dimensions
Sensitive	Latent	Factor	Matrices
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Sensitive	Feature	Isolation

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Non-sensitive	Dimensions
Sensitive	Latent	Factor	Matrices

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions
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Sensitive	Information	Extraction

Sensitive	Information	Regularizer

0,	1,	0… 1,	0,	0

1,	0,	1… 0,	1,	1

…
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions

Expert	latent	
factor	matrix	
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Sensitive	Information	Extraction

Sensitive	Information	Regularizer

0,	1,	0… 1,	0,	0

1,	0,	1… 0,	1,	1

…
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions

Expert	latent	
factor	matrix	
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Sensitive	Information	Extraction

Sensitive	Information	Regularizer

0,	1,	0… 1,	0,	0

1,	0,	1… 0,	1,	1

…
orthogonal

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions

Expert	latent	
factor	matrix	
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Sensitive	Information	Extraction

Sensitive	Information	Regularizer

0,	1,	0… 1,	0,	0

1,	0,	1… 0,	1,	1

…
orthogonal

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions

Expert	latent	
factor	matrix	

Exclusively	related	to	the	Sensitive	Information
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Sensitive	Information	Extraction

Sensitive	Information	Regularizer

0,	1,	0… 1,	0,	0

1,	0,	1… 0,	1,	1

… Independent

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

Residual	sensitive	
information	residing	in	
non-sensitive	dimensions

Expert	latent	
factor	matrix	

Sensitive	
Information



10/17/18 42

≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

♀
♂

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Information	Extraction
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≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Information	Extraction

orthogonal
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≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Information	Extraction

orthogonal

Sensitive	information	
extracted	and	isolated
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≈ ⨀ ⨀
0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

Sensitive	Information	Extraction

orthogonal

No	sensitive	information
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≈ ⨀ ⨀

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

(⨀ is	Khatri-Rao	product)

Sensitive	Latent	Factor	Matrices

orthogonal

Fairness-aware	Recommendation

Remove	sensitive	
dimensions
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≈ ⨀ ⨀

0,	1,	0… 1,	0,	0
1,	0,	1… 0,	1,	1

(⨀ is	Khatri-Rao	product)

orthogonal

Fairness-aware	Recommendation

Remove	sensitive	
dimensions

Reconstruct the	tensor	by	non-sensitive dimensions
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≈ ⨀ ⨀

(⨀ is	Khatri-Rao	product)

Fairness-aware	Recommendation

Fairness-Aware	
Recommendation

Reconstruct the	tensor	by	non-sensitive dimensions
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Generalizing	FATR	– Multi-category	

Expert	Sensitive	
Latent	Factor	Matrix

0,	1,	0… 0,	1,	0,	0
1,	0,	0… 1,	0,	1,	0

0,	0,	1… 0,	0,	0,	1

White
African	American

Asian

orthogonal
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Generalizing	FATR	– Multi-feature	

1,	0,	0… 0,	1,	1,	0
0,	1,	1… 1,	0,	0,	1

Female
Male

0,	1,	0… 0,	1,	0,	0
1,	0,	0… 1,	0,	1,	0

0,	0,	1… 0,	0,	0,	1

Expert	Sensitive	
Latent	Factor	Matrix

orthogonalWhite
African	American

Asian
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Experiment	– Scenarios	&	Datasets

Ø 3D	scenario:	User-Expert-Topic	Twitter	– ethnicity	of	the	expert	as	the	
sensitive	feature	(white	vs.	non-white);	

Part	of	experiment	is	omitted.	Refer	to	the	paper	for	more	details.	
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• 3D	scenario:	User-Expert-Topic	Twitter	– ethnicity	of	the	expert	as	the	
sensitive	feature	(white	vs.	non-white);

Ø Varying	considerations:	Twelve	Synthetic	Expert	Datasets	(four	levels	of	
bias	&	three	levels	of	sparsity);

Part	of	experiment	is	omitted.	Refer	to	the	paper	for	more	details.	
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Experiment	– Scenarios	&	Datasets

• 3D	scenario:	User-Expert-Topic	Twitter	– ethnicity	of	the	expert	as	the	
sensitive	feature	(white	vs.	non-white);

• Varying	considerations:	Twelve	Synthetic	Expert	Datasets	(four	levels	of	
bias	&	three	levels	of	sparsity);

Ø Generalizing	scenario:	User-Expert-Topic	Twitter	Dataset	– both	
ethnicity	(three	categories)	and	gender	(two	categories)	as	sensitive	
features.

Part	of	experiment	is	omitted.	Refer	to	the	paper	for	more	details.	
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Experiment	– Metrics

• Recommendation	Quality:	Precision@k,	Recall@k,	and	F1@k (higher	is	
better)
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Experiment	– Metrics

• Recommendation	Quality:	Precision@k,	Recall@k,	and	F1@k (higher	is	
better)

• Recommendation	Fairness:	MAD and	KS (lower	is	better)

|𝑀𝑒𝑎𝑛 𝑅0 −𝑀𝑒𝑎𝑛(𝑅3)|
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Experiment	– Baselines

We	consider	two	variations	of	FATR	– FT(G) (using	Gradient	Descent)	and	
FT(N) (using	Newton’s	Method)
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Experiment	– Baselines

We	consider	two	variations	of	FATR	– FT(G) (using	Gradient	Descent)	and	
FT(N) (using	Newton’s	Method)	– in	comparison	with

• Ordinary	Tensor	Completion	(OTC)	– Fairness-unaware	

• Regularization-based	Tensor	Completion	(RTC)	– Fairness-aware
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Experiment	– Baselines

We	consider	two	variations	of	FATR	– FT(G) (using	Gradient	Descent)	and	
FT(N) (using	Newton’s	Method)	– in	comparison	with

• Ordinary	Tensor	Completion	(OTC)	– Fairness-unaware	

• Regularization-based	Tensor	Completion	(RTC)	– Fairness-aware

• Ordinary	Matrix	Completion	(OMC)	– Fairness-unaware

• Regularization-based	Matrix	Completion	(RMC)	– Fairness-aware

• Matrix-based	variations	of	FATR	– FM(G) and	FM(N)



Experiment	– Twitter
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• What	is	the	different	between	Matrix-based vs.	Tensor-based?

• How	does	FATR perform	in	comparison	with	baselines?

Research Questions:



Experiment	– Twitter	(Matrix	vs.	Tensor)
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Recommendation	Quality:	Tensor-based	better than	Matrix-based
(higher	is	better)

• What	is	the	different	between	Matrix-based vs.	Tensor-based?



Experiment	– Twitter	(Matrix	vs.	Tensor)
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Recommendation	Fairness:	Tensor-based	worse than	Matrix-based	for	baselines
(lower	is	better)

• What	is	the	different	between	Matrix-based vs.	Tensor-based?



Experiment	– Twitter	(Matrix	vs.	Tensor)
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Recommendation	Fairness:	Tensor-based	better than	Matrix-based	for	FATR
(lower	is	better)

• What	is	the	different	between	Matrix-based vs.	Tensor-based?



Experiment	– Twitter	(FATR	vs.	Baselines)
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Recommendation	Quality:	FATR better than	RTC
(higher	is	better)

• How	does	FATR perform	in	comparison	with	baselines?



Experiment	– Twitter	(FATR	vs.	Baselines)
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Recommendation	Quality:	FATR slightly	worse	than	OTC
(higher	is	better)

• How	does	FATR perform	in	comparison	with	baselines?



Experiment	– Twitter	(FATR	vs.	Baselines)
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Recommendation	Fairness:	FATR better than	RTC and	OTC
(lower	is	better)

• How	does	FATR perform	in	comparison	with	baselines?



Experiment	– Synthetic	
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• Is FATR robust to the impact of data bias (four levels: low, medium,
high, extreme)?

• Is FATR robust to the impact of data sparsity (three levels: low,
medium, high)?

Research Questions:



Experiment	– Synthetic	(Impact	of	Bias)
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Recommendation	Quality	(higher	is	better)
• Is	FATR	robust to	the	impact	of	data	bias?



Experiment	– Synthetic	(Impact	of	Bias)
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FATR	provides	relatively	high	recommendation	quality	under	
different	bias	situations

• Is	FATR	robust to	the	impact	of	data	bias?



Experiment	– Synthetic	(Impact	of	Bias)
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FATR	enhances	fairness to	a	great	extent	under	different	
bias	situations

• Is	FATR	robust to	the	impact	of	data	bias?



Experiment	– Synthetic	(Impact	of	Sparsity)
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FATR	provides	relatively	high	recommendation	quality	under	
different	sparsity	situations

• Is	FATR	robust to	the	impact	of	data	sparsity?



Experiment	– Synthetic	(Impact	of	Sparsity)
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FATR	enhances	fairness	to	a	great	extent	under	different	
sparsity	situations

• Is	FATR	robust to	the	impact	of	data	sparsity?



Experiment	– Synthetic	(Impact	of	Sparsity)
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Besides	…
With	data	denser,	recommendation	unfairness goes	more	severe.



Experiment	– Generalizing
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F:	Female;	M:	Male
AA:	American	African;	W:	White;	A:	Asian

• How	does	FATR	perform	for	multi-feature and	multi-category case?



FATR	preserves	high recommendation	quality.

Experiment	– Generalizing
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F:	Female;	M:	Male
AA:	American	African;	W:	White;	A:	Asian

• How	does	FATR	perform	for	multi-feature and	multi-category case?



Experiment	– Generalizing
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F:	Female;	M:	Male
AA:	American	African;	W:	White;	A:	Asian

FATR	enhances fairness	well	for	both	ethnicity	and	gender.

• How	does	FATR	perform	for	multi-feature and	multi-category case?



Conclusion	and	Future	Work
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Conclusions:
• Propose	a	novel	tensor-based	framework	– FATR	– to	enhance	fairness
while	maintaining	recommendation	quality;

• FATR	can	handle	multi-feature and	multi-category scenarios;

• Extensive	experiments	show	the	effectiveness of	FATR	and	robustness
to	data	bias and	sparsity.

Future	Work:
• Extend	to	alternative	notions	of	fairness	beyond	statistical	parity;
• Extend	to	rating	prediction	tasks	for	recommenders	with	explicit	
rating	data.
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Thank	You!
Ziwei	Zhu,	Xia	Hu,	and	James	Caverlee

Texas	A&M	University


