
  

 

Abstract— The cognitive states of students in a lecture can 

give good indications of student concentration and learning, and 

therefore, modeling them would have a positive impact on their 

quality of education by enabling the intervention of instructors. 

In a traditional class, the instructor would assess the students’ 

level of attention. However, the assessment may not be accurate 

for a variety of reasons. Additionally, this creates a burden for 

the instructors. Wearable sensors and signal processing 

techniques could provide opportunities to assist teachers with 

this assessment. In this paper, we propose a methodology to 

model students’ cognitive states by leveraging hand motion and 

heart activity captured with smart watches. Following the 

application of a sequence of signal processing techniques to the 

raw data, we generate features, which describe characteristics of 

the hand motion and heart activity in a group of students. The 

most prominent features are selected for machine learning 

algorithms. By applying cross validation, the results of 

experiments on 30 students in two lectures offer accuracies of 

98.99% and 95.78% for predictions of ‘interest level’ and 

‘perception of difficulty’ on the topics covered during the 

lectures.  

Keywords— cognitive states; inertial sensors; PPG; feature 

selection; classification 

I. INTRODUCTION 

Researchers have suggested that identifying the quality of 
learning by monitoring the cognitive states of students is of 
value [1]. Teachers can adjust their teaching plans and 
methods in response to student cognitive feedback to improve 
the students’ learning. For example, if students show little 
interest or feel the cognitive workload is too heavy, learning 
may be negatively impacted. It is therefore crucial for 
educators to understand the students’ cognitive states during 
lectures. Traditionally, teachers rely on their experience, 
which may not be reliable in certain cases. Our work in this 
paper aims to solve this problem in a smart and automatic way 
by leveraging wearable sensors.  

With the rapid development of sensors and signal 
processing technologies, sensor-assisted applications are 
increasingly being used in various scenarios, including 
educational applications. Examples of such technologies are 
context ubiquitous learning [2-8], augmented reality [9-13], 
and affective and cognitive states monitoring. Our work in this 
paper belongs to the last category. Some related studies have 
preceded our work. Conati measured student emotional states 
by a dynamic decision network with sensors measuring heart 
rate, skin conductance and eyebrow position [14]. Meredith 

combined a facial expression camera, a posture analysis seat 
sensor, an EEG sensor and an eye-tracker to model three 
affective states and three cognitive states [15]. Similar studies 
used the same sensors as the two projects above to recognize 
student affect and concentration [16, 17]. Mirko used cameras 
to mimic large-scale gaze tracking in order to model students' 
attention states [18]. 

 Most previous work focused on the behavior of individuals. 
By contrast, our work in this paper proposes a different 
method to study classroom context. Second generation Moto 
360 smartwatches, which contain 3-axis accelerometers, 
gyroscopes, and photoplethysmographic (PPG) sensors are 
attached to students’ wrists with the aim of offering group 
level analyses. Fig. 1 shows an example of the study’s 
scenario. Our work has the following contributions: 1) a 
high-performance hand-writing detection method is proposed, 
2) multiple signal processing techniques applied to the 
sensors' data to generate high-level features which can 
describe the state of the group are designed and developed, 
and 3) our experiments achieved 98.99% and 95.78% 
accuracy (tested by the leave-three-out validation method) for 
the students’ ‘interest level’ and ‘perception of difficulty’ 
cognitive states using 4 classification algorithms.  

 
Figure 1. Example of Proposed System  

The remainder of this paper is organized as follows: The 
proposed approach, including hand-writing detection, feature 
extraction and model-building are explained in Section II. In 
Section III, the experimental setup is introduced and the 
experimental results are described. Finally, the conclusion is 
provided in Section IV. 
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Figure 2. Diagram of Proposed Approach 

II. PROPOSED APPROACH 

Fig. 2 shows the diagram of the proposed approach to 
model students’ interest level and perception of difficulty for 
various topics in a lecture. The entire process can be divided 
into five steps: 1) implementing hand-writing detection, 2) 
generating preprocessed series for individuals and the group 
from the raw data (excluding the writing episodes), 3) 
extracting several high-level features from the preprocessed 
series and results of writing detection, 4) applying feature 
selection techniques to the original feature set, 5) building 
models from the selected features by using four classification 
algorithms. 

A. Writing detection 

Through visual observations, we hypothesized that the 
action of writing is strongly correlated with students’ 
cognitive states. It is reasonable that if students are interested 
in or feel that a slide of the lecture is hard to understand, they 
will take notes for that slide. Thus, hand-writing detection is 
the first step. It is also important to note that in the specific 
lectures that we observed, the instructor discourages the use of 
laptops and computers and hence the action of typing was not 
of interest.  

Fig. 3 shows raw data from the 3-axis accelerometer and 
gyroscope during writing. Fig. 4 shows raw data during 
non-writing episodes for the purpose of comparison. The 
sensor in the smart watch is placed on the wrist, with the 
z-axis perpendicular to the wrist, facing outwards, the x-axis 
along the arm and the y-axis perpendicular to both the x- and 
z- axes. We observed that the accelerometer data remains at 
relatively constant levels because the wrist keeps the same 
pose during writing. Additionally, the acceleration due to 
gravity is greater than that due to the writing motion. As for 
the gyroscope, writing will affect certain axes more than 
others. In fact, the x-axis will give the largest variation 
because the wrist will rotate about the gyroscope’s x-axis 
when writing. As a result of this analysis, we selected the 
mean values for the 3 accelerometer axes and the Mean Cross 
Rate values for the 3 gyroscope axes as the features. However, 
before feature extraction, segmentation would be required. 

Since writing is an activity that maintains the same motion 
from the beginning to the end, we chose a sliding window 
with the window size of 3 seconds. Then, we used the 
One-Class Support Vector Machine algorithm [19] with a 
non-linear kernel to build the classifier.   

 
Figure 3. Data from Accelerometer and Gyroscope when Writing 

 

Figure 4. Data from Accelerometer and Gyroscope when Non-writing 



  

TABLE I.  RESULT OF HAND-WRITING DETECTION 

Classification Report 

Precision Recall F1-score 

0.9899 0.9800 0.9849 

To assess the accuracy of our hand-writing episode 
detection, we collected data with motion sensors sampling at 
25 Hz, and asked a user to perform 40 minutes of writing and 
10 minutes of non-writing. 30 minutes of writing data was 
used for training, and 10 minutes of writing data and 10 
minutes of non-writing data were used for the testing set. The 
experimental results of hand-writing detection are shown in 
Table I, which are suitable for the purpose of our signal 
processing development. 

After applying the constructed classifiers to the raw data 
acquired from the smart watches in lectures, we identified the 
episodes of writing and non-writing for every student and 
time-stamped them. We combined individual student series to 
create group-level writing episodes. Fig. 5 shows an example 
where at any time, the number of students who are writing can 
be observed. 

 
Figure 5. Example of Group’ s Writing Episodes 

B. Preprocessing the raw data without writing episodes. 

Because the data associated with writing episodes may 
influence the extraction of other useful information about the 
group, we removed the writing episodes from the raw data. 
Since the raw data time-series are too basic and noisy to 
provide useful information, we applied certain preprocessing 
steps on the accelerometer and gyroscope data to prepare it for 
the next step, which involves feature extraction. We generated 
five time-series for every individual: an amplitude series, an 
entropy series, an estimated magnitude series, a heart rate 
series and a heart rate variability series. 

The amplitude series gives the magnitude of the 
acceleration and angular velocity vectors, which are derived 
from the accelerometer and gyroscope respectively. Estimated 
magnitude and entropy are calculated from the amplitude 
series using a sliding window. In order to compute the 
estimated magnitude, we first divided the entire range of 
amplitude values into 50 intervals. We subsequently took a 
sliding window of 5 seconds in length to calculate a time array 
of means of the amplitude series. Finally, since each value of 

the mean array will belong to one of the 50 amplitude intervals, 
we approximated the values of the mean array with the 
medians of their corresponding intervals. The estimated 
magnitude can describe how large a student’s motion is. The 
entropy indicates how large the variation of a student’s motion 
is. We hypothesize that when a student is focusing on the 
lecture, the hand motions will decrease, and therefore the 
estimated magnitude and the entropy will decrease. In 
addition, we constructed similar time-series for the group:  
group entropy and group estimated magnitude. For these two 
series, we first merged all the individual amplitudes into one 
array and sorted it by time stamps. Then estimated magnitude 
and entropy are calculated from it using a sliding window of 5 
seconds. By this method, we can get group level information 
about student hand motions.   

Besides the hand motion, we attempted to study 
physiological observations acquired with smart watches from 
students. We collected PPG data at a frequency of 12.5 Hz. 
The PPG data was inherently noisy due to the presence of 
motion artifacts [20]. We applied a bandpass filter. We 
calculated the heart rate approximately every second by 
considering the peak-to-peak time intervals in the PPG signal. 
To reduce the impact of motion artifacts, a time-varying 
confidence measure at time t, c(t), is introduced in Eq. (1), 
where a(t) is the magnitude of the total acceleration at time t. 

 𝑐(𝑡) = exp(−(𝑎(𝑡) − 9.8)2) 

Therefore, the confidence associated with a heart rate value is 

unity when there is no net acceleration, and approaches zero 

as the net acceleration increases. However, the instantaneous 

confidence is not suitable as there may be instants when there 

is no net acceleration during a high-movement period. 

Therefore, for each point in the heart rate series, we took the 
lowest confidence near that timestamp. We used the 

confidence measures for mixing the individual heart rates into 

the group heart rate series, by using them to create a weighted 

average of the individual heart rates. We also averaged the 

measurements to create a group confidence series. 

TABLE II.  SERIES FROM PREPROCESSING 

Series Name Formula 

Amplitude Amp = √x2 +y2 +z2  

Estimated 

Magnitude 
EM = approximate(mean(window(Amp))) 

Entropy 

Series 
En = −∑P× log P(mean(window(Amp))) 

Group 

Estimated 

Magnitude 
GEM = approximate(mean(window(mix(Amp)))) 

Group 

Entropy 
GEn = −∑P× logP(mean(window(mix(Amp)))) 

Heart Rate  HR = frequency ÷ 60 × time_between_peaks 

Heart Rate 

Variability 
SDANN and SDNNIDX with four different intervals 

  In addition to heart rate, we measured the heart rate 

variability (HRV) for each student. We used Modified 

SDANN and SDNNIDX to give series of heart rate 

variability, where SDANN is the standard deviation of means 
of NN intervals calculated over short sub-intervals, and 

SDNNIDX is the mean of standard deviations of NN intervals 



  

calculated over short sub-intervals [21]. We calculated both 

SDANN and SDNNIDX for every 30 seconds, minute, two 

minutes, and five minutes with five sub-intervals for each. 

Table II lists all the series and their formulas. 

C. High-level features from preprocessed series and writing 

detection 

Determining student cognitive states requires high-level 
features from the preprocessed series and the hand-writing 
episodes. Before feature extraction, normalization is required 
for both the preprocessed series and hand-writing detection 
results because individuals’ behaviors in class vary. For 
example, some students take notes even if they think the 
current content is trivial, but they may take more notes when it 
is interesting (or difficult). On the other hand, other students 
may only take notes when they are interested in the content. 
Without normalization, the data from students who prefer to 
take more notes will override that from other students when 
combining all the students’ writing episodes together. This 
will result in a loss of information about the group. The same 
applies to estimated magnitude and entropy. The 
normalization is shown in Eq. (2), where Series represents the 
original series needing to be normalized, max(Series) 
represent the maximum data value in the original series, and 
Full Value represents the value that we wish to normalize the 
original series to. 

 NormalizedSeries = Series ×(
FullValue

max(Series)
) 

Then, we merged all the normalized individual writing 
episodes, estimated magnitude series, entropy series and 
amplitude series, and sorted them by time stamps. By doing 
this, we can get combined hand-motion information of all 
individuals. Subsequently, we calculated the mean, variance, 
standard deviation and root mean square for these series. For 
the group series (the group estimated magnitude and entropy), 
we calculated the mean cross rate, skewness and kurtosis in 
addition to the features above. We extracted the maximum 
value, minimum value, mean and mode from the group 
writing episodes.  

Besides the features extracted above, we also wish to know 
how different the students’ hand motions are in the lectures.  
Thus, we calculated the Euclidean distance between every 
two-series combination of individuals’ estimated magnitude 
series and entropy series to get a set of distances. We extracted 
the mean, variance, standard deviation and root mean square 
from the distance sets.  

We also combined the individual heart rate and heart rate 
variability series into group heart rate and heart rate variability 
series without normalization, sorting them by time stamps. 
The normalization process is not required because the 
individual differences in heart rate activities is not large. We 
extracted the mean, variation, standard deviation and root 
mean square from the mixed data. We calculated the mean by 
using a weighted average, with the confidence values serving 
as the weights. When the confidence value dropped below 0.6, 
we discarded the heart rate and heart rate variability data from 
the other features as the motion artifacts likely have a strong 
presence. Table III lists all the features. 

TABLE III.  HIGH-LEVEL FEATURES 

Origin Features Name  

Group Writing Episodes Maximum, Minimum, Mean, Mode 

Mixed Individual Writing 

Episodes 

Mean, Variation, Standard Deviation, 

Root Mean Square  

Mixed Individual Amplitude 

Serires 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Mixed Individual Estimated 

Magnitude Serires 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Mixed Individual Entropy 

Series 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Group Estimated Magnitude 

Series 

Mean, Variation, Standard Deviation, 

Root Mean Square, Mean Cross Rate, 

skewness and kurtosis 

Group Entropy Series 

Mean, Variation, Standard Deviation, 

Root Mean Square, Mean Cross Rate, 

Skewness and Kurtosis 

Distance Set of Individual 

Estimated Magnitude Serires 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Distance Set of Individual 

Entropy Series 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Mixed Individual Heart Rate 

Series 

Mean, Variation, Standard Deviation, 

Root Mean Square 

Mixed Individual Heart Rate 

Variability Series 

Mean, Variation, Standard Deviation, 

Root Mean Square 

D. Feature Selection 

Redundant and irrelevant features can negatively impact 
the performance of classification and its computational 
efficiency. Therefore, a feature selection technique is required 
to determine the best subset of features. We used a modified 
forward selection method. The difference between the method 
used and regular forward selection [22] is that in every 
iteration, the method keeps n subsets of features with top n 
accuracies rather than only one best subset, because regular 
forward selection may perform too greedily to determine the 
best subset. Moreover, in this modified method, we use 
average accuracy, calculated from the leave-three-out 
validation, to evaluate subsets of features. 

E. Classification 

In this work, we investigated four supervised machine 
learning algorithms: decision tree, nearest neighbor, Naïve 
Bayes and support vector machine with linear kernel. We used 
Scikit-learn [23], an open-source machine learning library, for 
the classification tasks. 

III. EXPERIMENTAL RESULTS 

A.  Experimental Setup and Data Collection 

In order to evaluate the proposed approach, we performed 
an experiment in two normal lectures with a total of 14 topic 
periods. We recorded the time stamps corresponding to the 
beginning and end of all 14 topics. Thirty students in the class 
volunteered to wear the Moto 360 smartwatches on their 
writing hands during the lectures to collect data at the 
frequencies of 25 Hz and 12.5 Hz for motion and PPG data, 
respectively. The investigation was approved by the IRB at 
Texas A&M University and informed consent was provided to 
all participants. After each lecture, we surveyed the students 
and obtained their opinions on their 'interest level' and 
'perception of difficulty' towards each topic covered in the 
lectures. We used this information as the ground-truth labels 
for the classification algorithms. Fig. 6 shows one example of 
the survey. Since the surveys were anonymized, every topic 



  

may receive a diverse set of opinions in terms of the level of 
interest or the difficulty level. For example, not all students 
may find the topic of ‘bio-potential signals’ interesting or 
difficult. Therefore, we applied a K-means clustering 
algorithm to better understand the distribution of the class as a 
whole. While there are three choices for each cognitive state in 
the survey, we found that the number of choices for ‘not very 
interested’ and ‘hard’ was very small and therefore we ignored 
them. As a result, we chose the number of clusters for the 
K-mean clustering to be two. The 14 data samples that 
represent topics were labeled as ‘interested’ or ‘not interested’ 
for the interest level, and ‘difficult’ or ‘easy’ for the perception 
of difficulty. After applying the processing to get the set of 
features described in Section II, we created classifiers 
leveraging the labels acquired from the clustering technique. 

 
Figure 6. Example of Survey 

B. Feature Selection Results 

 
Figure 7. Analysis of Results of Feature Selection 

We divided the lectures into 14 episodes, one episode per 
topic, which means there were 14 labeled data samples in 
total. The leave-three-out method produced 364 combinations 
of training and testing sets. We used the mean of the 
accuracies as the indication to evaluate the subset of features. 
Table IV shows the results of number of features and the 
corresponding accuracy of each classifier for both cognitive 
states. We observed that the number of features that the 
decision tree algorithm requires is the smallest, and support 
vector machine and Naïve Bayes require more features. Fig. 7 
shows additional statistics and interesting observations: 1) 
gyroscope data has more importance than accelerometer data 
and PPG data. This may be because that hand motion has a 
stronger relation with student cognitive states and the 
gyroscope data describes the hand motion more effectively. 2) 
The heart rate variability is more helpful than the pure heart 
rate. 3) The amplitude has no contribution to the results, but 
estimated magnitude, calculated from amplitude, offers 
valuable insights, which may be because the amplitude is too 
noisy. 4) The features related to entropy play a principal role, 
which means entropy can help extract useful information from 
raw data. 5) Features from the individual series are more 

important than the group, which may be due to the 
normalization.  

TABLE IV.  RESULTS OF NUMBER OF FEATURES AND ACCURACY  

Classifier Cognition 
Number of 

Features  

Accuracy 

Decision Tree 

Interest 7 98.99% 

Difficulty 5 93.50% 

NN 
Interest 8 97.07% 

Difficulty 10 88.29% 

SVM 
Interest 14 98.08% 

Difficulty 10 95.79% 

Naive Bayes 
Interest 9 93.22% 

Difficulty 8 91.85% 

Correlation-based feature selection [22] is another 
popular feature selection method, which is model 
independent. To better understand which features contain 
more useful information, we calculated the correlation of 
each feature and the classifying labels and ranked them. Table 
V shows four features with the highest correlations for both 
‘interest level’ and ‘perception of difficulty’. Due to the lack 
of space, the entire table is not included. The table 
demonstrates that the hand motion and heart activities are 
more related to interest level than perception of difficulty. 
Moreover, most of the features with high correlation are 
selected in our modified forward selection method, which 
validates our feature selection approach. 

TABLE V.  COREELATION RANKING OF FEATURES  

Cognition Name of Features  Correlation 

Interest 

root mean square of gyroscope 

individual entropy 
0.7087 

mean of gyroscope individual entropy 0.7060 

mean of accelerometer individual 

entropy 
0.6846 

mean of gyroscope group entropy 0.6702 

Difficulty 

standard deviation of individual 

writing episodes 
0.6015 

variance of individual writing 

episodes 
0.5913 

root mean square of gyroscope 

distance set of individual estimated 

magnitude 

0.5858 

Standard deviation of gyroscope 

distance set of individual estimated 

magnitude 

0.5692 

B. Classification Results 

 
Figure 8. Performance of Classifiers 



  

Fig. 8 shows the performance of each classifier with their 
own best subset of features. Decision tree and support vector 
machine provide the best performance, where the best 
accuracies reach 98.99% for ‘interest’ prediction and 95.79% 
for ‘difficulty’ prediction. For other metrics, including 
precision, recall and F1-score, all classifiers offer good 
performance, which demonstrates that the proposed approach 
is effective. Moreover, the overall results for ‘interest level’ 
prediction are better than those for ‘perception of difficulty’ 
prediction, which means the students’ interest level is more 
closely related to the students’ hand motion and heart 
activities. This conclusion is consistent with the results of the 
correlation-based feature ranking. 

IV. CONCLUSION 

In this paper, we proposed an approach to model students’ 
cognitive states based on the data from wrist-worn IMUs and 
PPG sensors. We applied various signal processing techniques 
to generate a broad set of features. We used a modified 
forward selection method, combined with leave-three-out 
validation to get the best subset of features. In order to 
evaluate the proposed approach, we performed an experiment 
with 14 topics covered in two lectures with 30 students. Our 
detection accuracies exhibit the effectiveness of the proposed 
techniques. For future work, adding additional IMUs can 
likely lead to additional insights. Leveraging other 
physiological sensors including EMG, EEG and eyeball 
tracking could potentially improve the performance of our 
classifiers.  
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