Improving Top-K Recommendation via Joint Collaborative Autoencoders

Ziwei Zhu, Jianling Wang and James Caverlee Department of Computer Science and Engineering, Texas A&M University, USA {zhuziwei, jlwang, caverlee}@tamu.edu

Introduction

 Problem & Goal: Collaborative Autoencoders only consider user-user or item-item correlations, and the quality of recommendation may be restricted. In contrast, effective modeling of user-item interactions could lead to improved recommendation.

- Contributions:
- (i) Propose the Joint Collaborative
 Autoencoder (JCA) that captures both useruser and item-item correlations simultaneously.

User-based AutoRec and Item-based AutoRec Are Complementary

 Hits Different Rate for U-AutoRec and I-AutoRec: run U-AutoRec and I-AutoRec on the same MovieLens 1M dataset, and compare the HitsDifferenceRate of the top-10 recommendations by the two models.

$$HitsDifferenceRate = \frac{size(\mathbb{H}_U \cup \mathbb{H}_I) - size(\mathbb{H}_U \cap \mathbb{H}_I)}{size(\mathbb{H}_U \cup \mathbb{H}_I)}$$

• Recommendation by averaging U-AutoRec and I-AutoRec: compare the recommendation quality between U-AutoRec, I-AutoRec and a simple averaging model of them.

	ML1M			Yelp			Games		
	P@10	R@10	F@10	P@10	R@10	F@10	P@10	R@10	F@10
U-AutoRec	.2343	.1698	.1969	.0230	.0608	.0333	.0152	.1022	.0265
I-AutoRec	.1782	.1454	.1602	.0202	.0556	.0296	.0138	.0979	.0241
UI-AutoRec	.2209	.1801	.1984	.0240	.0646	.0350	.0171	.1192	.0298

Proposed Model							
• Framework:	 Joint Collaborative Autoencoder: 						
	$\widehat{\mathbf{R}} = \frac{1}{2} [\sigma(\sigma(\mathbf{R}\mathbf{V}^U + \mathbf{b}_1^U)\mathbf{W}^U + \mathbf{b}_2^U)]$						
Item Rating Averaged User Rating	+ $\sigma(\sigma((\mathbf{R}^{\top}\mathbf{V}^{I} + \mathbf{b}^{I}) \circ \mathbf{f})\mathbf{W}^{I} + \mathbf{b}^{I})^{\top}]$						

- (ii) Adopt a pairwise hinge-based objective function to optimize top-K precision and recall directly.
- (iii) Present a **mini-batch optimization algorithm**.
- (iv) Extensive **experiments** show that the JCA outperforms state-of-the-art neural and non-neural baselines.

Experiment Setup

Three Datasets:

	Users	Items	Ratings	Sparsity(%)
MovieLens 1M (ML1M)	6,027	3,062	574,026	3.11
Yelp	12,705	9,245	318,314	0.271
Video Games (Games)	19,056	9,073	184,609	0.107

Evaluation Metrics:

 $P@k = |\mathbb{O}_{u}^{k} \cap \mathbb{O}_{u}^{+}|/k$ $R@k = |\mathbb{O}_{u}^{k} \cap \mathbb{O}_{u}^{+}|/|\mathbb{O}_{u}^{+}|$ $F1@k = (2 \cdot P@k \cdot R@k)/(P@k + R@k)$

• **Baselines:** MF, BPR, CDAE, U-AutoRec, I-AutoRec, UI-AutoRec, NCF, and NPR.

• **Code and data:** https://github.com/Zziwei/Joint-Collaborative-Autoencoder

Proposed Model vs. State-of-the-art Models

 Observations: (i) JCA performs best for all three datasets; (ii) the performance improvement is larger for sparser datasets; (iii) the performance improvement is larger for smaller k.

Proposed Model and Objective Function

Conclusion and Future Work

- Conclusions:
- (i) Propose the Joint Collaborative Autoencoder framework that learns both user-user and itemitem correlations simultaneously.
- (ii) Adopt a pairwise hinge-based objective function to optimize the top-K precision and recall.
- (iii) Present a mini-batch training algorithm so that JCA can be trained on large datasets.
- (iv) Extensive experiments show that the proposed framework outperforms state-of-the-art baselines.
- Future Work: exploring how to incorporate auxiliary information, such as textual and visual information, into the framework to further improve the recommendation quality.
- JCA with different objective functions vs. corresponding baselines

		ML1M		Yelp			Games		
	P@10	R@10	F@10	P@10	R@10	F@10	P@10	R@10	F@10
JCA-MSE	.2346	.1768	.2017	.0256	.0665	.0370	.0178	.1205	.0311
NCF	.2182	.1637	.1870	.0235	.0636	.0343	.0161	.1089	.0281
UI-AutoRec	.2209	.1801	.1984	.0240	.0646	.0350	.0171	.1192	.0298
CDAE	.2344	.1743	.1999	.0242	.0654	.0353	.0173	.1154	.0301
JCA-BPR	.2106	.1597	.1817	.0234	.0639	.0343	.0173	.1160	.0301
NPR	.2078	.1594	.1806	.0203	.0543	.0295	.0114	.0762	.0198
BPR	.1975	.1498	.1704	.0154	.0391	.0221	.0101	.0655	.0175

JCA-MSE and JCA-BPR outperform SOTA baselines with MSE and BPR objective functions respectively.

JCA vs. JCA with different objective

functions

	ML1M			Yelp			Games		
	P@10	R@10	F@10	P@10	R@10	F@10	P@10	R@10	F@10
JCA	.2384	.1845	.2080	.0261	.0674	.0376	.0185	.1247	.0322
JCA-MSE	.2346	.1768	.2017	.0256	.0665	.0370	.0178	.1205	.0311
JCA-BPR	.2106	.1597	.1817	.0234	.0639	.0343	.0173	.1160	.0301

JCA outperforms other JCA variations with MSE and BPR objective functions.

 JCA vs. JCA without item normalization factor

	ML1M				Yelp		Games		
	P@10	R@10	F@10	P@10	R@10	F@10	P@10	R@10	F@10
JCA	.2384	.1845	.2080	.0261	.0674	.0376	.0185	.1247	.0322
JCA-NF	.2303	.1777	.2006	.0257	.0669	.0371	.0179	.1214	.0313

JCA outperforms JCA without item normalization factor.