Popularity-Opportunity Bias in Collaborative Filtering

Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee

Texas A&M University

Recommenders – essential conduits

Recommenders – pursue higher and higher utility

Recommenders – raise higher bias at the same time

Popularity Bias

Popular items are recommended more frequently than less popular items (a demographic parity based concept), leading to rich-get-richer problem.

Drawback of Conventional Concept of Popularity Bias Is the popularity bias really a problem?

a popular item A

recommended to

100 users

a less popular item B

recommended toVS 10 users

Drawback of Conventional Concept of Popularity Bias Is the popularity bias really a problem?

Drawback of Conventional Concept of Popularity Bias Enforce no popularity bias following existing works.

a popular item A

recommended to 50 users

Conventional concept of popularity bias compares the **recommendation to all users** for items **without considering the ground-truth of user-item matching**.

However, in practice, only the recommendation to matched users can influence the feedback or economic gain items receive.

Take user-item matching into consideration, and compare the **probability of being recommended to matched users** for items of different popularity (an equal opportunity based concept).

Example of Popularity-opportunity Bias This is a real problem, rich-get-richer will happen. a popular item A a less popular item B recommended to ground truth: 100 matched users 100 users recommended to ground truth: VS **10 users 10 matched users** 2 80 users users clicked by clicked by true positive rate $=\frac{80}{100}=80\%$ true positive rate $=\frac{2}{10}=\frac{20\%}{13}$

Popularity-opportunity bias – two views

- User-view popularity-opportunity bias (uPO bias)
- Item-view popularity-opportunity bias (iPO bias)

Popularity-opportunity bias – user-view

User-view popularity-opportunity bias (uPO bias)
 Given user u likes a popular item i and a less popular item j, whether i will be ranked higher than j?

Popularity-opportunity bias – user-view

User-view popularity-opportunity bias (uPO bias)
 Measure uPO bias by popularity-rank correlation for users (PRU).
 From 0 to 1: higher value represents severer bias.

Popularity-opportunity bias – item-view

 Item-view popularity-opportunity bias (iPO bias)
 Whether popular items have higher expected ranking to matched users than less popular items?

Popularity-opportunity bias – item-view

Item-view popularity-opportunity bias (iPO bias)
 Measure iPO bias by popularity-rank correlation for items (PRI).
 From 0 to 1: higher value represents severer bias.

$$PRI = -SRC(pop(I), avg_rank(I))$$
popularity of all items
average rankings of items for matched users

Empirically show the prevalence of popularity-opportunity bias

8	ML1M		Ciao		Epinions		App	
	MF	BPR	MF	BPR	MF	BPR	MF	BPR
PRU	0.835	0.779	0.542	0.591	0.684	0.708	0.567	0.636
PRI	0.980	0.969	0.363	0.433	0.535	0.573	0.609	0.692

High bias measured for both user and item views for both models and four datasets

Debiasing approach – Popularity Compensation (PC)

Promote less popular items by adding compensation to predicted scores.

$$C_{u,i} = \frac{1}{pop(i)} \cdot (\beta \cdot \widehat{R}_{u,i})$$
 Calculate compensation based on popularity

$$\widehat{\mathbf{R}}_{u,i}^* = \widehat{\mathbf{R}}_{u,i} + \alpha \cdot \mathbf{C}_{u,i} \cdot \frac{\|\mathbf{C}_u\|}{\|\mathbf{R}_u\|}$$

Add the compensation to predicted score

Debiasing approach – Popularity Compensation (PC)

Promote less popular items by adding compensation to predicted scores.

$$\mathbf{C}_{u,i} = \underbrace{\frac{1}{pop(i)}} \cdot (\beta \cdot \widehat{\mathbf{R}}_{u,i})$$

Calculate compensation based on popularity

$$\widehat{\mathbf{R}}_{u,i}^* = \widehat{\mathbf{R}}_{u,i} + \alpha \cdot \mathbf{C}_{u,i} \cdot \frac{\|\mathbf{C}_u\|}{\|\mathbf{R}_u\|}$$

Add the compensation to predicted score

Debiasing approach – Popularity Compensation (PC)

Promote less popular items by adding compensation to predicted scores.

$$C_{u,i} = \frac{1}{pop(i)} \cdot (\beta \cdot \widehat{R}_{u,i})$$
 Calculate compensation based on popularity

$$\widehat{\mathbf{R}}_{u,i}^* = \widehat{\mathbf{R}}_{u,i} + \alpha \cdot \mathbf{C}_{u,i} \cdot \frac{\|\mathbf{C}_u\|}{\|\mathbf{R}_u\|}$$

Add the compensation to predicted score

Experiment result

		NDCG@k		PRU	PRI	
		@20	@50	The		
	MF	0.2726	0.2930	0.8350	0.9799	
	MF-weight	0.1484	0.1793	0.4845	0.6407	
ML1M	MF-rescale	0.1361	0.1658	0.4365	0.6936	
	MF-PC	0.1435	0.1980	0.4552	0.5594	
	MF	0.0717	0.0934	0.5420	0.3625	
	MF-weight	0.0447	0.0675	0.3174	0.3293	
Ciao	MF-rescale	0.0425	0.0608	0.3219	0.2526	
	MF-PC	0.0647	0.0845	0.3073	-0.0150	
	MF	0.0693	0.0938	0.6840	0.5351	ΝΛο
	MF-weight	0.0349	0.0526	0.3453	0.2341	
Epinions	MF-rescale	0.0343	0.0509	0.3678	0.2182	cor
	MF-PC	0.0605	0.0848	0.3549	-0.0415	
	MF	0.1026	0.1359	0.5667	0.6089	D
	MF-weight	0.0388	0.0596	0.3552	0.2334	Pr
App	MF-rescale	0.0384	0.0583	0 3350	0.2147	CO
	MF-PC	0.0965	0.1280	0.3527	-0.0487	

Methods to reduce the conventional popularity bias

Proposed popularity compensation method

Experiment result

5					
		NDC @20	G@k @50	PRU	PRI
	MF	0.2726	0.2930	0.8350	0.9799
	MF-weight	0.1484	0.1793	0.4845	0.6407
ML1M	MF-rescale	0.1361	0.1658	0.4365	0.6936
	MF-PC	0.1435	0.1980	0.4552	0.5594
	MF	0.0717	0.0934	0.5420	0.3625
	MF-weight	0.0447	0.0675	0.3174	0.3293
Ciao	MF-rescale	0.0425	0.0608	0.3219	0.2526
	MF-PC	0.0647	0.0845	0.3073	-0.0150
	MF	0.0693	0.0938	0.6840	0.5351
	MF-weight	0.0349	0.0526	0.3453	0.2341
Epinions	MF-rescale	0.0343	0.0509	0.3678	0.2182
	MF-PC	0.0605	0.0848	0.3549	-0.0415
	MF	0.1026	0.1359	0.5667	0.6089
	MF-weight	0.0388	0.0596	0.3552	0.2334
App	MF-rescale	0.0384	0.0583	0.3350	0.2147
	MF-PC	0.0965	0.1280	0.3527	-0.0487

Proposed PC method reduces the popularityopportunity bias to similar degree as conventional popularity debiasing methods

Experiment result

		NDC @20	G@k @50	PRU	PRI
	MF	0.2726	0.2930	0.8350	0.9799
	MF-weight	0.1484	0.1793	0.4845	0.6407
ML1M	MF-rescale	0.1361	0.1658	0.4365	0.6936
	MF-PC	0.1435	0.1980	0.4552	0.5594
	MF	0.0717	0.0934	0.5420	0.3625
	MF-weight	0.0447	0.0675	0.3174	0.3293
Ciao	MF-rescale	0.0425	0.0608	0.3219	0.2526
	MF-PC	0.0647	0.0845	0.3073	-0.0150
MF		0.0693	0.0938	0.6840	0.5351
	MF-weight	0.0349	0.0526	0.3453	0.2341
Epinions	MF-rescale	0.0343	0.0509	0.3678	0.2182
	MF-PC	0.0605	0.0848	0.3549	-0.0415
	MF	0.1026	0.1359	0.5667	0.6089
	MF-weight	0.0388	0.0596	0.3552	0.2334
App	MF-rescale	0.0384	0.0583	0.3350	0.2147
	MF-PC	0.0965	0.1280	0.3527	-0.0487

Proposed PC method preserves utility better than conventional popularity debiasing methods

Conclusions

- Propose the study of **popularity-opportunity bias**;
- Empirically show the vulnerability of two matrix factorization models to the bias by a **data-driven study** on four datasets;
- Theoretically show how these two models inherently produce the popularity-opportunity bias on both user and item sides (refer to the paper);
- Propose the Popularity Compensation debiasing method, and empirically show the effectiveness of the proposed method to reduce the popularity-opportunity bias and preserve recommendation utility compared with conventional popularity debiasing methods.

Thank You!

Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee Texas A&M University

Special thank to SIGIR Travel Grants program!

