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Recommenders – essential conduits
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Recommenders – pursue higher and higher utility

… …

NDCG; recall; 
precision; MRR; 

CTR; MAP… 3



Recommenders – raise higher bias at the same time

… …

NDCG; recall; 
precision; MRR; 

CTR; MAP…
bias
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Popularity Bias
Popular items are recommended more frequently than less popular 
items (a demographic parity based concept), leading to rich-get-
richer problem.

Item popularity

MovieLens 1M with MF

#𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑟𝑎𝑛𝑘𝑒𝑑 𝑖𝑛 𝑡𝑜𝑝15
#𝑢𝑠𝑒𝑟𝑠
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Drawback of Conventional Concept of Popularity Bias
Is the popularity bias really a problem?

VS

a popular item A a less popular item B

recommended to
100 users recommended to

10 users
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Drawback of Conventional Concept of Popularity Bias

VS

Is the popularity bias really a problem?

a popular item A a less popular item B

ground truth:
100 matched users

recommended to
100 users recommended to

10 users
ground truth:

10 matched users
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Drawback of Conventional Concept of Popularity Bias

a popular item A a less popular item B

VS

Looks ok (rich-get-richer won’t happen)
Is the popularity bias really a problem?

𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟓𝟎
𝟏𝟎𝟎

= 𝟓𝟎% 𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟓
𝟏𝟎

= 𝟓𝟎%

recommended to
100 users

ground truth:
100 matched users

50 users

clicked by

recommended to
10 users

ground truth:
10 matched users

clicked by

5 users
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Drawback of Conventional Concept of Popularity Bias

VS

Enforce no popularity bias following existing works.

a popular item A a less popular item B

recommended to
50 users

recommended to
50 users
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Drawback of Conventional Concept of Popularity Bias

VS

Looks unfair
Enforce no popularity bias following existing works.

a popular item A a less popular item B

𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟐𝟓
𝟏𝟎𝟎

= 𝟐𝟓% 𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟏𝟎
𝟏𝟎

= 𝟏𝟎𝟎%

recommended to
50 users

ground truth:
100 matched users

clicked by

recommended to
50 users

ground truth:
10 matched users

clicked by

25 users 10 users
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Problem with Conventional Popularity Bias

Conventional concept of popularity bias compares the 
recommendation to all users for items without considering the 
ground-truth of user-item matching.

However, in practice, only the recommendation to matched users 
can influence the feedback or economic gain items receive.

11



Solution – Popularity-opportunity Bias

Take user-item matching into consideration, and compare the 
probability of being recommended to matched users for items of 
different popularity (an equal opportunity based concept).
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Example of Popularity-opportunity Bias

VS

This is a real problem, rich-get-richer will happen.

a popular item A a less popular item B

𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟖𝟎
𝟏𝟎𝟎

= 𝟖𝟎% 𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝟐
𝟏𝟎

= 𝟐𝟎%

recommended to
10 users

ground truth:
10 matched users

clicked by

recommended to
100 users

ground truth:
100 matched users

clicked by

80 users
2 

users
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Popularity-opportunity bias – two views

• User-view popularity-opportunity bias (uPO bias)

• Item-view popularity-opportunity bias (iPO bias)
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Popularity-opportunity bias – user-view

• User-view popularity-opportunity bias (uPO bias)
Given user u likes a popular item i and a less popular item j, whether i
will be ranked higher than j?
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Popularity-opportunity bias – user-view

• User-view popularity-opportunity bias (uPO bias)
Measure uPO bias by popularity-rank correlation for users (PRU).
From 0 to 1: higher value represents severer bias.

Spearman’s rank correlation

popularity of items user u 
likes in testing set

popularity of items user u 
likes in testing set
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Popularity-opportunity bias – item-view

• Item-view popularity-opportunity bias (iPO bias)
Whether popular items have higher expected ranking to matched users 
than less popular items?
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• Item-view popularity-opportunity bias (iPO bias)
Measure iPO bias by popularity-rank correlation for items (PRI).
From 0 to 1: higher value represents severer bias.

Popularity-opportunity bias – item-view

popularity of all items average rankings of items for 
matched users
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Empirically show the prevalence of popularity-opportunity bias

High bias measured for both user and item views for both models and four datasets
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Debiasing approach – Popularity Compensation (PC)
Promote less popular items by adding compensation to predicted scores.

Calculate compensation based on popularity

Add the compensation to predicted score
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Promote less popular items by adding compensation to predicted scores.

Calculate compensation based on popularity

Add the compensation to predicted score

Debiasing approach – Popularity Compensation (PC)
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Promote less popular items by adding compensation to predicted scores.

Calculate compensation based on popularity

Add the compensation to predicted score

Debiasing approach – Popularity Compensation (PC)
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Experiment result

Methods to reduce the 
conventional popularity bias

Proposed popularity 
compensation method
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Experiment result

Proposed PC method 
reduces the popularity-
opportunity bias to similar 
degree as conventional 
popularity debiasing 
methods
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Experiment result

Proposed PC method 
preserves utility better than 
conventional popularity 
debiasing methods 
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Conclusions

• Propose the study of popularity-opportunity bias;

• Empirically show the vulnerability of two matrix factorization 
models to the bias by a data-driven study on four datasets;

• Theoretically show how these two models inherently produce 
the popularity-opportunity bias on both user and item sides
(refer to the paper);

• Propose the Popularity Compensation debiasing method, and 
empirically show the effectiveness of the proposed method to 
reduce the popularity-opportunity bias and preserve 
recommendation utility compared with conventional popularity 
debiasing methods.
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Thank You!
Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee

Texas A&M University
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