Recommendation for New Users and New Items via Randomized Training and Mixture-of-Experts Transformation

Ziwei Zhu, Shahin Sefati*, Parsa Saadatpanah*, and James Caverlee

Texas A&M University

*Comcast Applied AI Lab

Recommenders – essential conduits

Recommenders with warm start users and items

user-item interactions

collaborative filtering (CF)

Cannot work for cold start users and items

With the help of auxiliary information

Train with warm start users and items: $\mathbf{f}_{U} = f_{U} (\mathbf{f}_{U}), \quad \mathbf{f}_{I} = f_{I} (\mathbf{f}_{U})$ Infer for cold start users and items: $\mathbf{f}_{U} = f_{U} (\mathbf{f}_{U})^{T} \cdot f_{I} (\mathbf{f}_{U})$ transformation functions

Two categories of methods

- Separate-training method
- Joint-training method

Separate-training method

Separately train a CF component and an 'auxiliary to CF' transformation component.

Separate-training method

Separate-training method -- error superimposition problem

Pros: Learn high-quality CF representations.

Cons: The final cold start recommendation error is $\mathcal{L}_{CF} + \mathcal{L}_{trans}$ (*error superimposition*).

Joint-training method

Train the CF component and the 'auxiliary to CF' component in the same back-propagation flow.

Joint-training method -- ineffective learning problem

Pros: No error superimposition problem. Cons: the first few layers of f_U and f_I are far from output layer, leading to *ineffective learning* of the transformation process.

Unified transformation problem

A *unified transformation* function will hold the relationship between users (items) in the auxiliary space to the transformed CF space, which is not always true in practice.

Motivation – three challenges

- Error superimposition problem
- Ineffective learning problem
- Unified transformation problem

Our proposal -- Heater

- Error superimposition problem a joint training based framework
- Ineffective learning problem **similarity constraint, randomized training**
- Unified transformation problem mixture-of-expert transformation

Heater -- framework Calculate training loss item side component user side component Dot product **P**′ Q u transformation step 2 U'u step 1 \boldsymbol{U}_{u} 1: User Auxiliary **Item Auxiliary** Representation Representation

Joint-training method as the main framework to **avoid error superimposition problem**.

Add a similarity constraint in the middle to **improve the learning effectiveness for transformation functions**.

Still cannot guarantee the quality of U'_u and I'_i , especially for initial epochs of training, leading to ineffective training.

Still cannot promise the quality of U'_u and I'_i , especially for initial epochs of training, leading to ineffective training.

Randomly input high-quality pretrained CF representation or transformed auxiliary representation to following layers to further **improve the effectiveness of training**.

Randomly input high-quality pretrained CF representation or transformed auxiliary representation to following layers to further **improve the effectiveness of training**.

Heater – mixture-of-expert transformation Calculate training loss item side component user side component Dot product P u $\min \| \boldsymbol{P}_u - \boldsymbol{U'}_u \|_{\mathrm{F}}^2$ $\min \| \boldsymbol{Q}_i - \boldsymbol{I'}_i \|_{\mathrm{F}}^2$ P_u \boldsymbol{U}_{η} \boldsymbol{Q}_i Item-Auxiliary - • Pretrained Item CF Pretrained User CF - User Auxiliary-Representation Representation Representation Representation

To address the **unified transformation problem**, replace the MLP with a mixture-of-expert layer.

Heater – mixture-of-expert transformation

To address the **unified transformation problem**, replace the MLP with a mixture-of-expert layer.

Experiments – research questions

- RQ1: How does Heater perform compared with SOTA baselines?
- RQ2: How effective are the proposed similarity constraint, Randomized Training, and Mixture-of-Experts Transformation mechanisms?
- RQ3: What are the impact of three key hyper-parameters: similarity constraint weight α, Randomized Training probability p, and number of experts T in Mixture-of-Experts Transformation?
- RQ4: What is the impact of the quality of pretrained CF representations on Heater compared with other models that also take pretrained representations as input?

Experiments – three cold start recommendation tasks

- Task 1: recommend warm items to cold users;
- Task 2: recommend cold items to warm users;
- Task 3: recommend cold items to cold users.

Experiments – dataset

	Training			Validation			Test			
	#user	#item	#record	density	#user	#item	#record	#user	#item	#record
LastFM (Task 1)	1,136	12,850	55,810	0.38%	189	12,850	9,209	567	12,850	27,815
CiteULike (Task 2)	5,551	13,584	164,210	0.22%	5,551	1,018	13,037	5,551	2,378	27,739
XING-U (Task 1)	64,129	12,312	1,549,242	0.20%	10,688	12,312	258,497	32,064	12,312	775,837
XING-I (Task 2)	64,129	12,312	1,549,242	0.20%	64,129	2,051	275,782	64,129	6,156	756,638
XING-UI (Task 3)	64,129	12,312	1,549,242	0.20%	10,688	2,051	45,807	32,064	6,156	379,730

With corresponding auxiliary representations of users and/or items.

Experiments – baselines

- KNN: from Sedhain et al. 2014, can work for Task 1 and Task 2;
- **CMF**: from Singh et al. 2008, can work for Task 1 and Task 2;
- LinMap: from Gantner et al. 2010, can work for all three tasks;
- NLinMap: from Ooed et al. 2013, can work for all three tasks;
- LoCo: from Sedhain et al. 2017, can work for Task 1 and Task 2;
- LWA: from Vartak et al. 2017, can only work for Task 2;
- **DropoutNet**: from Volkovs et al. 2017, can work for all three tasks;
- LLAE: from Li et al. 2019, can work for Task 1 and Task 2.

Experiments – RQ1 compare with baselines

NDCG@20

	LastFM	CiteULike	XING-U	XING-I	XING-UI
	(Task 1)	(Task 2)	(Task 1)	(Task 2)	(Task 3)
KNN	0.3537	0.1500	0.1722	0.0740	-
LinMap	0.2880	0.2150	0.3933	0.1605	0.1095
CMF	0.3332	0.2289	0.3488	0.0628	-
LoCo	0.3586	0.2503	0.3538	0.2230	-
NLinMap	0.3535	0.2641	<u>0.4001</u>	0.2118	0.1418
LWA	-	0.2960	-	0.2008	-
DropoutNet	0.3439	0.3089	0.2761	<u>0.2236</u>	<u>0.1454</u>
LLAE	<u>0.3658</u>	0.3249	-	-	-
Heater	0.3705	0.3731	0.4150	0.2372	0.1566
Δ	1.3%*	14.8%**	3.7%**	6.1%**	7.7%**

'-' represents unavailable result: KNN, CMF, LoCo, LWA and LLAE cannot work for Task 3; LWA cannot work for Task 1; LLAE run into out-of-memory error on XING dataset.

Experiments – Heater vs. baselines

NDCG@20

	LastFM	CiteULike	XING-U	XING-I	XING-UI
	(Task 1)	(Task 2)	(Task 1)	(Task 2)	(Task 3)
KNN	0.3537	0.1500	0.1722	0.0740	-
LinMap	0.2880	0.2150	0.3933	0.1605	0.1095
CMF	0.3332	0.2289	0.3488	0.0628	-
LoCo	0.3586	0.2503	0.3538	0.2230	-
NLinMap	0.3535	0.2641	<u>0.4001</u>	0.2118	0.1418
LWA	-	0.2960	-	0.2008	-
DropoutNet	0.3439	0.3089	0.2761	<u>0.2236</u>	<u>0.1454</u>
LLAE	<u>0.3658</u>	0.3249	-	-	-
Heater	0.3705	0.3731	0.4150	0.2372	0.1566
Δ	1.3%*	14.8%**	3.7%**	6.1%**	7.7%**

Significant improvement over the best baseline models.

Experiments – ablation study

NDCG@20

	LastFM	CiteULike	XING-U	XING-I	XING-UI
	(Task 1)	(Task 2)	(Task 1)	(Task 2)	(Task 3)
Heater	0.3705	0.3731	0.4150	0.2372	0.1566
w/o SC	0.2387	0.3437	0.3595	0.2053	0.1263
w/o RT	0.3532	0.3672	0.3145	0.1833	0.1511
w/o MoET	0.3689	0.3382	0.3753	0.2132	0.1434

SC: similarity constraint

- **RT:** randomized training
- MoET: mixture-of-expert transformation

Experiments – ablation study

NDCG@20

	LastFM	CiteULike	XING-U	XING-I	XING-UI
	(Task 1)	(Task 2)	(Task 1)	(Task 2)	(Task 3)
Heater	0.3705	0.3731	0.4150	0.2372	0.1566
w/o SC	0.2387	0.3437	0.3595	0.2053	0.1263
w/o RT	0.3532	0.3672	0.3145	0.1833	0.1511
w/o MoET	0.3689	0.3382	0.3753	0.2132	0.1434

Without any one of the three components, the performance decreased.

Experiments – more

Welcome to read our paper to find more experimental results.

Conclusions

- Propose a novel cold start recommendation algorithm that can provide recommendation for both new users and new items;
- Propose the similarity constraint, randomized training, and mixtureof-expert transformation to address three remaining challenges of existing cold start recommendation algorithms;
- Extensive experiments on three public datasets show the **effectiveness** of the proposed model and three components.

Thank you!

Ziwei Zhu, Shahin Sefati*, Parsa Saadatpanah*, and James Caverlee

Texas A&M University

*Comcast Applied AI Lab

