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Recommenders with warm start users and items
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Cannot work for cold start users and items
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With the help of auxiliary information
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Train with warm start users and items:
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Two categories of methods

e Separate-training method
* Joint-training method



Separate-training method
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Separately train a CF component and an ‘auxiliary to CF’
transformation component.



Separate-training method

L = Lcp+ Lirans—vt Lerans—1I
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Separate-training method -- error superimposition problem

L = Lcpt Lirans—vt Lirans—1

Ltrans—l
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Pros: Learn high-quality CF representations.
Cons: The final cold start recommendation error is Lor + Lirans
(error superimposition).




Joint-training method

user auxiliary item auxiliary

Train the CF component and the ‘auxiliary to CF’ component in the
same back-propagation flow.
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Joint-training method -- ineffective learning problem

L=LCF

f,L
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user auxiliary item auxiliary

Pros: No error superimposition problem.
Cons: the first few layers of f;; and f; are far from output layer,
leading to ineffective learning of the transformation process.
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Unified transformation problem

User Auxiliary Space User CF Space
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A unified transformation function will hold the relationship
between users (items) in the auxiliary space to the transformed CF
space, which is not always true in practice.



Motivation — three challenges

 Error superimposition problem
* Ineffective learning problem
* Unified transformation problem



Our proposal -- Heater

* Error superimposition problem — a joint training based framework
* Ineffective learning problem — similarity constraint, randomized training
* Unified transformation problem — mixture-of-expert transformation
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Heater -- framework

Calculate training loss
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Joint-training method as the main framework to avoid error
superimposition problem.
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Heater — similarity constraint

Calculate training loss
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Add a similarity constraint in the middle to improve the learning
effectiveness for transformation functions.
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Heater — randomized training

Calculate training loss
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Still cannot guarantee the quality of U’,, and I';, especially for
initial epochs of training, leading to ineffective training.
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Heater — randomized training

Calculate training loss
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Still cannot promise the quality of U’,, and I';, especially for
initial epochs of training, leading to ineffective training.
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Heater — randomized training
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! Calculate training loss
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Randomly input high-quality pretrained CF representation or
transformed auxiliary representation to following layers to
further improve the effectiveness of training.
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Heater — randomized training

! Calculate training loss
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transformed auxiliary representation to following layers to
further improve the effectiveness of training.
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Heater — mixture-of-expert transformation

Calculate training loss
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To address the unified transformation problem, replace the MLP
with a mixture-of-expert layer.
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Heater — mixture-of-expert transformation

To address the unified transformation problem, replace the MLP
with a mixture-of-expert layer.



Experiments — research questions

* RQ1: How does Heater perform compared with SOTA baselines?

« RQ2: How effective are the proposed similarity constraint, Randomized
Training, and Mixture-of-Experts Transformation mechanisms?

 RQ3: What are the impact of three key hyper-parameters: similarity
constraint weight a, Randomized Training probability p, and number of
experts T in Mixture-of-Experts Transformation?

* RQ4: What is the impact of the quality of pretrained CF
representations on Heater compared with other models that also take
pretrained representations as input?
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Experiments — three cold start recommendation tasks

e Task 1: recommend warm items to cold users;
e Task 2: recommend cold items to warm users;
e Task 3: recommend cold items to cold users.




Experiments — dataset

Training Validation Test
#user  #item = #record density | #user #item  #record | #user  #item  #record
LastFM (Task 1) 1,136 12,850 55,810 0.38% 189 12,850 9,209 567 12,850 27,815
CiteULike (Task 2) 5,551 13,584 164,210 0.22% 5,551 1,018 13,037 5,551 2,378 27,739
XING-U (Task 1) 64,129 12,312 1,549,242 0.20% | 10,688 12,312 258,497 | 32,064 12,312 775,837
XING-I (Task 2) 64,129 12,312 1,549,242 0.20% | 64,129 2,051 275,782 | 64,129 6,156 756,638
XING-UI (Task 3) 64,129 12,312 1,549,242 0.20% | 10,688 2,051 45,807 | 32,064 6,156 379,730
60%  10% 30%
60%  10% 30% i i __)—cold-item vali
_ ,.—cold-item vall 60%- | training 60%— | training coIE;user vali
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With corresponding auxiliary representations of users and/or items.
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Experiments — baselines

e KNN: from Sedhain et al. 2014, can work for Task 1 and Task 2;

* CMF: from Singh et al. 2008, can work for Task 1 and Task 2;

* LinMap: from Gantner et al. 2010, can work for all three tasks;

* NLinMap: from Ooed et al. 2013, can work for all three tasks;

e LoCo: from Sedhain et al. 2017, can work for Task 1 and Task 2;
 LWA: from Vartak et al. 2017, can only work for Task 2;
 DropoutNet: from Volkovs et al. 2017, can work for all three tasks;
e LLAE: from Li et al. 2019, can work for Task 1 and Task 2.



Experiments — RQ1 compare with baselines

NDCG@20
LastFM | CiteULike | XING-U | XING-I | XING-UI
(Task 1) | (Task 2) (Task 1) | (Task 2) | (Task 3)
KNN 0.3537 0.1500 0.1722 0.0740 -
LinMap 0.2830 0.2150 0.3933 0.1605 0.1095
CMF 0.3332 0.2289 0.3488 0.0628 -
LoCo 0.3586 0.2503 0.3538 0.2230 -
NLinMap 0.3535 0.2641 0.4001 0.2118 0.1418
LWA - 0.2960 - 0.2008 -
DropoutNet 0.3439 0.3089 0.2761 0.2236 0.1454
LLAE 0.3658 0.3249 - - -
Heater 0.3705 0.3731 0.4150 0.2372 0.1566
A 1.3%" 14.8%™* 3.7%"* 6.1%"* 7.7%"*

‘” represents unavailable result: KNN, CMF, LoCo, LWA and LLAE cannot work for Task 3; LWA

cannot work for Task 1; LLAE run into out-of-memory error on XING dataset.



Experiments — Heater vs. baselines

NDCG@20
LastFM | CiteULike | XING-U | XING-I | XING-UI
(Task 1) | (Task 2) (Task 1) | (Task 2) | (Task 3)
KNN 0.3537 0.1500 0.1722 0.0740 -
LinMap 0.2830 0.2150 0.3933 0.1605 0.1095
CMF 0.3332 0.2289 0.3488 0.0628 -
LoCo 0.3586 0.2503 0.3538 0.2230 -
NLinMap 0.3535 0.2641 0.4001 0.2118 0.1418
LWA . 0.2960 - 0.2008 -
DropoutNet 0.3439 0.3089 0.2761 0.2236 0.1454
LLAE 0.3658 0.3249 - - -

Significant improvement over the best baseline models.



Experiments — ablation study
NDCG@20

LastFM CiteULike XING-U XING-I XING-UI
(Task 1) (Task2) (Task1) (Task2) (Task 3)

Heater 0.3705 0.3731 0.4150 0.2372 0.1566

w/o SC 0.2387 0.3437 0.3595 0.2053 0.1263
w/o RT 0.3532 0.3672 0.3145 0.1833 0.1511
w/o MoET | 0.3689 0.3382 0.3753 0.2132 0.1434

SC: similarity constraint
RT: randomized training
MOoET: mixture-of-expert transformation
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Experiments — ablation study
NDCG@20

LastFM CiteULike XING-U XING-I XING-UI

(Task 1) (Task2) (Task1) (Task2) (Task 3)
Heater 0.3705 0.3731 0.4150 0.2372 0.1566
w/o SC 0.2387 0.3437 0.3595 0.2053 0.1263
w/o RT 0.3532 0.3672 0.3145 0.1833 0.1511

w/o MoET | 0.3689 0.3382 0.3753 0.2132 0.1434

Without any one of the three components, the performance decreased.
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Experiments — more

Welcome to read our paper to find more experimental results.



Conclusions

* Propose a novel cold start recommendation algorithm that can
provide recommendation for both new users and new items;

* Propose the similarity constraint, randomized training, and mixture-
of-expert transformation to address three remaining challenges of
existing cold start recommendation algorithms;

* Extensive experiments on three public datasets show the
effectiveness of the proposed model and three components.
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