

Introduction

RecSys learned by biased implicit feedback (missing not at random) will provide biased recommendation results. Previous works address this issue by inverse propensity scoring, but rely on a heuristic propensity estimation, which leads to compromised performance.

Contributions:

• Propose a new **combinational joint learning** model to learn user-item relevance and **propensity** simultaneously to provide unbiased recommendation results.

Extensive experiments on two public datasets demonstrate the effectiveness of the proposed model in terms of estimation accuracy for both useritem relevance and propensity.

Propensity Estimation

Power-law function of item popularity in existing works:

$$\theta_{*,i} = \left(\sum_{u \in \mathcal{U}} Y_{u,i} / max_{i \in \mathcal{I}} \left(\sum_{u \in \mathcal{U}} Y_{u,i}\right)\right)$$

which is not an unbiased estimation of the exposure probability: item popularity only considers the observed positive user-item interactions, but item exposure is determined by both observed positive interactions and unobserved negative feedback.

Unbiased propensity estimation by Inverse Relevance Scoring:

$$\mathcal{L}_{IRS} = \sum_{(u,i)\in\mathcal{D}} \frac{Y_{u,i}}{\gamma_{u,i}} (log(\widehat{O}_{u,i})) + (1 - \frac{Y_{u,i}}{\gamma_{u,i}}) (log(1 - \widehat{O}_{u,i}))$$

where $Y_{u,i}$ is the probability of item *i* being relevant to user *u*; and $\widehat{O}_{u,i}$ is the predicted propensity, modeled as $\widehat{O}_{u,i} = (w \cdot a + (1 - w) \cdot K_i)^e$, with $w = f_w(\mathbf{Q}_i)$, $a = f_a(\mathbf{Q}_i)$, $e = f_e(\mathbf{Q}_i)$, and $K_i = \sum_{u \in \mathcal{U}} Y_{u,i} / max_{i \in \mathcal{I}} \left(\sum_{u \in \mathcal{U}} Y_{u,i} \right).$

Compare Recommendation Performance

• The proposed method outperforms conventional biased methods and SOTA unbiased methods. Table 1. Recommendation performance comparison, where best baselines are marked by underlines.

			Point-wise models							Pair-wise models			
			MF	MF	RelMF	RelMF	NIME	CIME	٨	BDD	TIRDD	CIRDD	Δ
			-RMSE	-CE	-RMSE	-CE		CJIVII	Δ	DFK	UDF K		
Yahoo	DCG	@1	0.5314	0.5275	0.5364	0.5339	0.5403	0.5610	4.58%	0.5409	0.5433	0.5648	3.96%
		@2	0.7297	0.7385	0.7353	<u>0.7398</u>	0.7434	0.7746	4.71%	0.7451	0.7493	0.7750	3.42%
		@3	0.8520	0.8582	0.8595	0.8616	0.8678	0.8960	4.00%	0.8672	0.8777	0.8972	2.22%
	MAP	@1	0.5314	0.5275	0.5364	0.5339	0.5403	0.5610	4.58%	0.5419	0.5433	0.5648	3.96%
		@2	0.6189	0.6178	0.6203	0.6220	0.6256	0.6475	4.09%	0.6263	0.6295	0.6496	3.19%
		@3	0.6420	0.6419	0.6433	0.6465	0.6486	0.6694	3.54%	0.6491	0.6532	0.6721	2.88%
Coat	DCG	@1	0.5305	0.5485	0.5485	0.5612	0.5696	0.5907	5.26%	0.5316	0.5738	0.5907	2.94%
		@2	0.7608	0.7695	<u>0.7881</u>	0.7848	0.7949	0.8223	4.34%	0.7739	0.7868	0.8223	4.51%
		@3	0.9190	0.9298	0.9337	<u>0.9367</u>	0.9431	0.9679	3.33%	0.9300	0.9387	0.9595	2.21%
	MAP	@1	0.5305	0.5485	0.5485	0.5612	0.5696	0.5907	5.26%	0.5316	0.5738	0.5907	2.94%
		@2	0.6118	0.6203	0.6371	<u>0.6435</u>	0.6477	0.6709	4.26%	0.6181	0.6392	0.6709	4.95%
		@3	0.6255	0.6399	0.6498	0.6494	0.6572	0.6741	3.73%	0.6378	0.6596	0.6818	3.36%

Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning

Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee Department of Computer Science and Engineering, Texas A&M University, USA {*zhuziwei, yunhe, zhan13679, caverlee*}@tamu.edu

Biased Recommendation with Implicit Feedback

Widespread **implicit feedback** (such as clicks, views, etc.) is determined by two sources of information: 1) **User-item** relevance; 2) User-item exposure.

 $\gamma_1 D_1 \theta_1$ $\gamma_2 D_2 \theta_2$

Effectiveness of Estimated Propensity

Baselines can perform better with the learned propensity from the proposed combinational joint learning method than with the power-law function propensity estimation.

Hence, a RecSys model learned by this implicit feedback data cannot predict accurate user-item relevance. Instead, it predicts how likely an item is **both** exposed and liked by a user, which is a biased recommendation result.

recommendations

• The ideal loss:

where $R_{u,i}$ is a Bernoulli variable for user-item relevance, which is **unobservable** in practice. Conventionally, $R_{u,i}$ is replaced by $Y_{u,i}$, which is the Bernoulli variable for observed user-item feedback.

 $\mathbb{E}[\mathcal{L}_{IPS}] = \mathbb{E}[\mathcal{L}_{ideal}]$

Combinational Joint Learning

models for \mathcal{D}_c .

Algorithm 1: Training algorithm.

Effectiveness of Estimated Propensity

Fig. 2. *DCG@3* of CJMF and CJMF without residual components on the Yahoo dataset, with varying C.

Unbiased Loss via IPS (from Saito et al.)

 $\mathcal{L}_{ideal} = \sum_{(u,i)\in\mathcal{D}} R_{u,i}(log(\widehat{R}_{u,i})) + (1 - R_{u,i})(log(1 - \widehat{R}_{u,i}))$

 The unbiased loss via Inverse Propensity Scoring (IPS): $\mathcal{L}_{IPS} = \sum_{(u,i) \in \mathcal{D}} \frac{Y_{u,i}}{\theta_{u,i}} (log(\widehat{R}_{u,i})) + (1 - \frac{Y_{u,i}}{\theta_{u,i}}) (log(1 - \widehat{R}_{u,i}))$

where $\theta_{u,i}$ is the probability of item *i* being exposed to user *u*, i.e., the propensity. Easy to prove:

• $\Psi_c = \{\mathbf{P_c}, \mathbf{Q_c}\}$ is the relevance sub-model, and $\Phi_c = \{f_w^c, f_a^c, f_e^c\}$ is the propensity sub-model for data chunk \mathcal{D}_c . $\Psi_c = \{\overline{P}_c, \overline{Q}_c\}$ and $\overline{\Phi}_c = \{\overline{f_w^c}, \overline{f_a^c}, \overline{f_e^c}\}$ are the corresponding residual sub-

> Update $\{\Psi_1, \ldots, \Psi_C\} \setminus \Psi_c$ by \mathcal{L}_{IPS} , and update $\{\Phi_1, \ldots, \Phi_C\} \setminus \Phi_c$ by \mathcal{L}_{IRS} ; Update $\{\overline{\Psi}_1, \ldots, \overline{\Psi}_C\}$ by \mathcal{L}_{IPS} with $\widehat{R}_{u,i}$ calculated by $\{\Psi_1 + \overline{\Psi}_1, \ldots, \Psi_C + \overline{\Psi}_C\}$; Update $\{\overline{\Phi}_1, \ldots, \overline{\Phi}_C\}$ by \mathcal{L}_{IRS} with $\widehat{O}_{u,i}$ calculated by $\{\Phi_1 + \overline{\Phi}_1, \ldots, \Phi_C + \overline{\Phi}_C\}$;

• Performance of CJMF improves rapidly then converges as C increases, reaching a peak level when $C \ge 5$ • Without the residual component, the proposed model is less effective than the complete version of the proposed model.