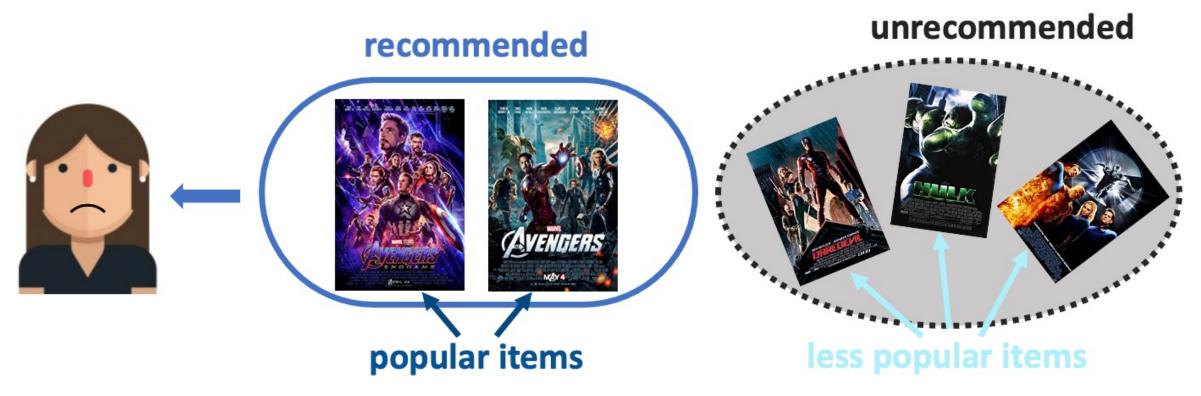
Popularity Bias in Dynamic Recommendation

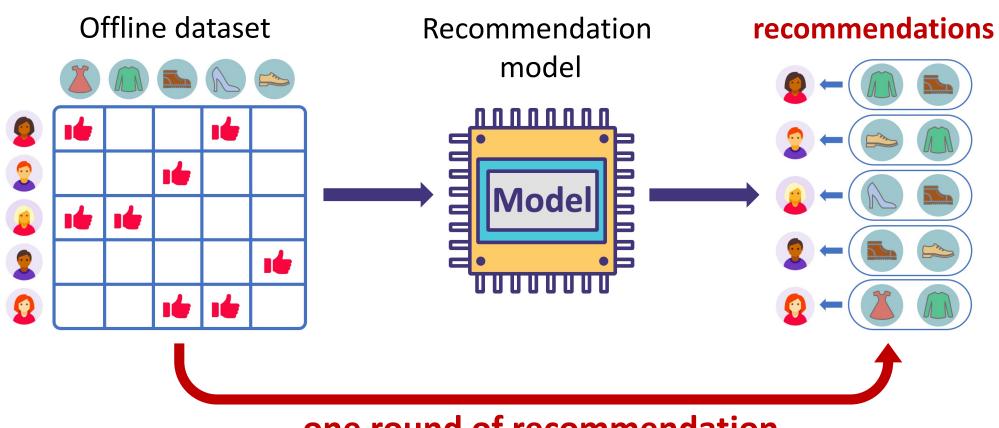
Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee Texas A&M University

Popularity bias is a long-standing problem in RecSys

Popular items are **overly exposed** in recommendations at the expense of **less popular** items that users may find interesting being **under-recommended**.



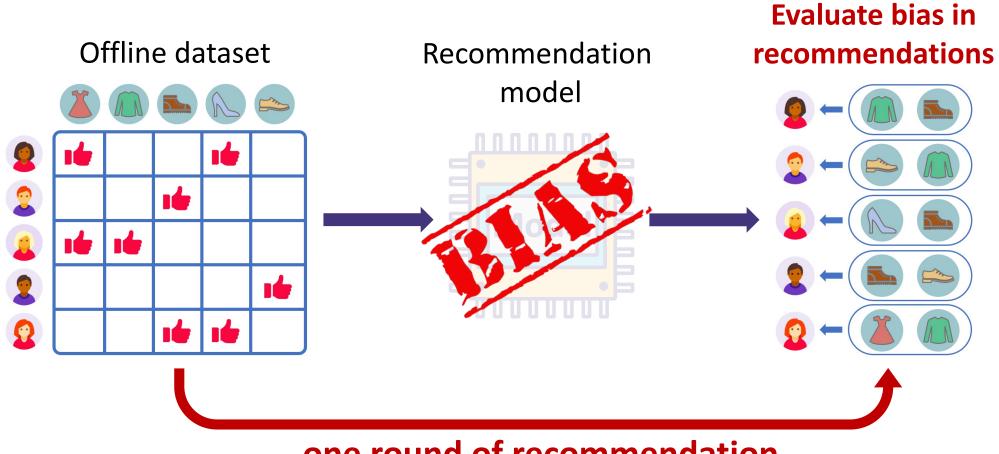
Prior works study the popularity bias in a static setting



one round of recommendation

Evaluate bias in

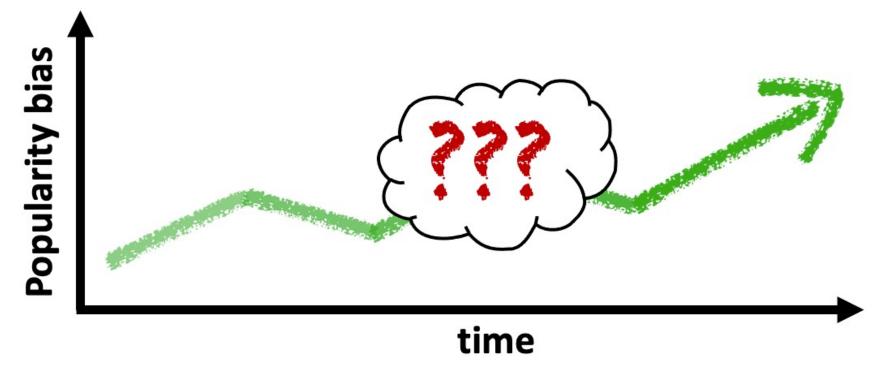
Prior works study the popularity bias in a static setting

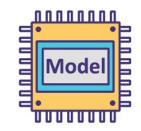


one round of recommendation

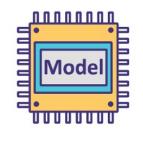
Research gap: popularity bias in dynamic recommendation

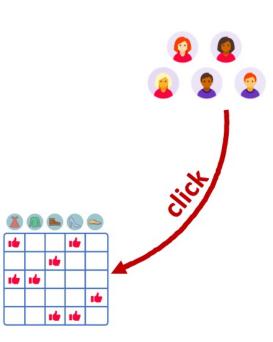
How does the popularity bias **evolve** in a real-world **dynamic recommendation** process?

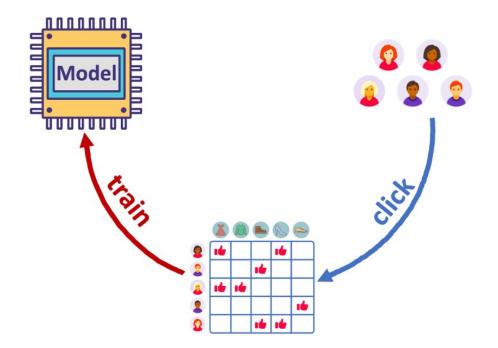


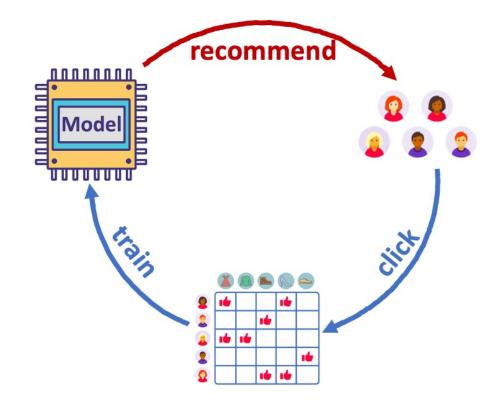


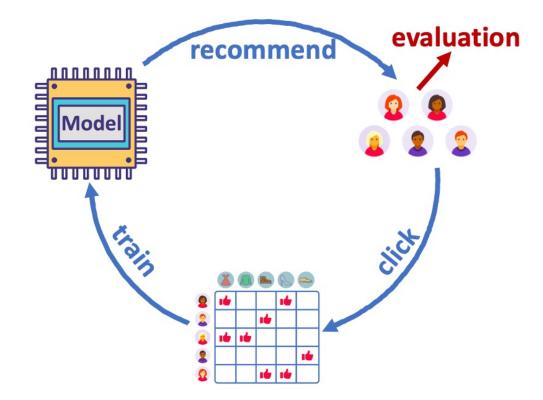
			2		
2	14			14	
2			16		
	16	16			
2					16
2			16	14	



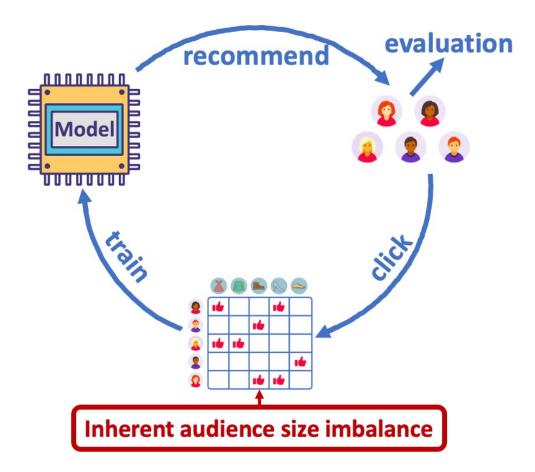








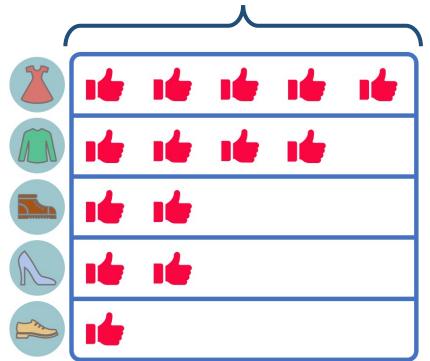
Key factor: inherent audience size imbalance



Key factor: inherent audience size imbalance

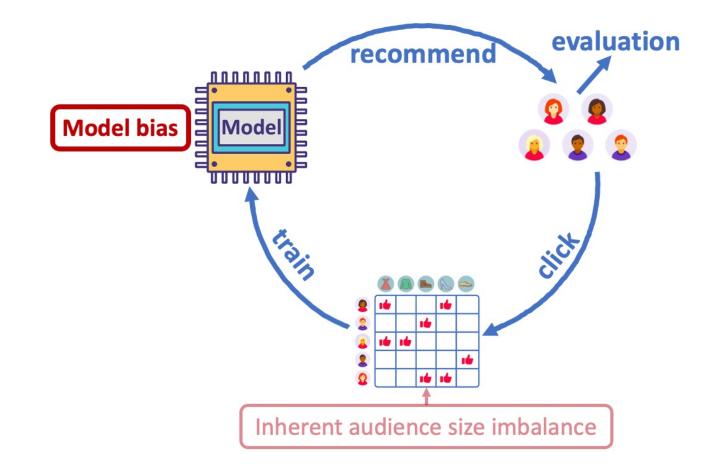
Inherent Audience Size

(how many users will click the item if recommended to all users)

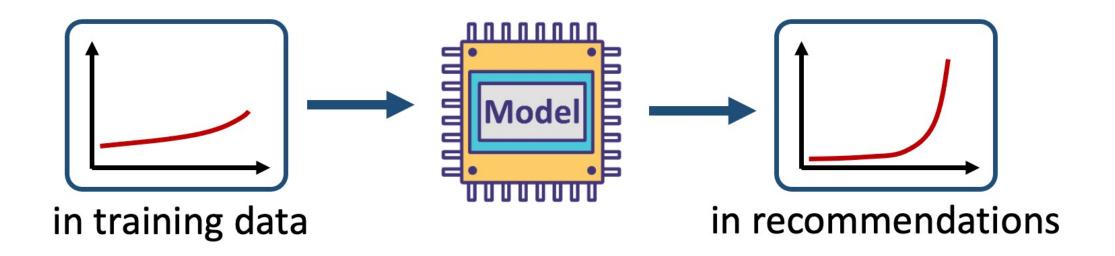


A few items may have very large audience sizes (liked by most of users in ground truth), while the majority have small ones.

Key factor: model bias

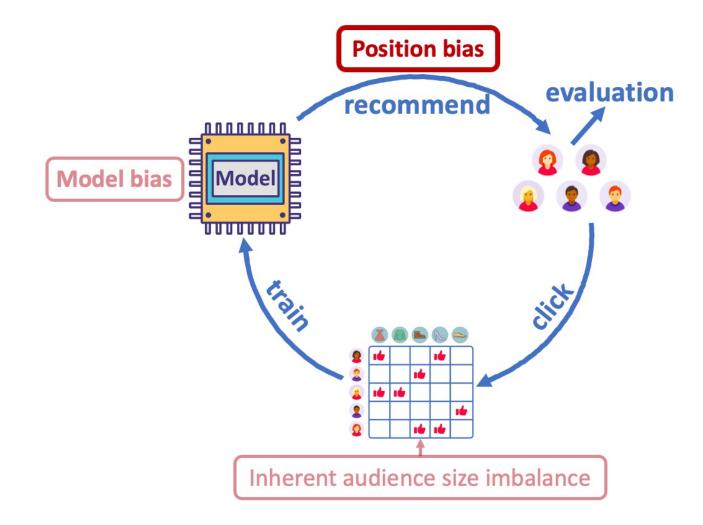


Key factor: model bias

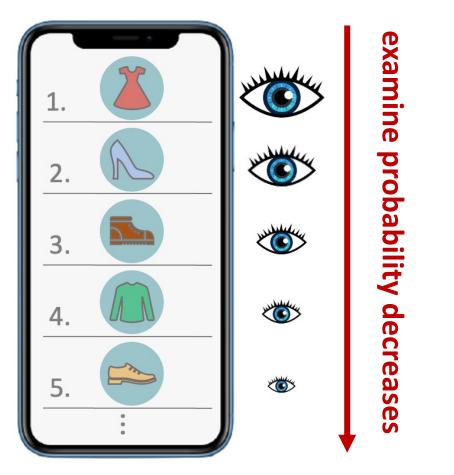


The recommendation model itself may amplify any imbalances in the data it ingests for training.

Key factor: position bias

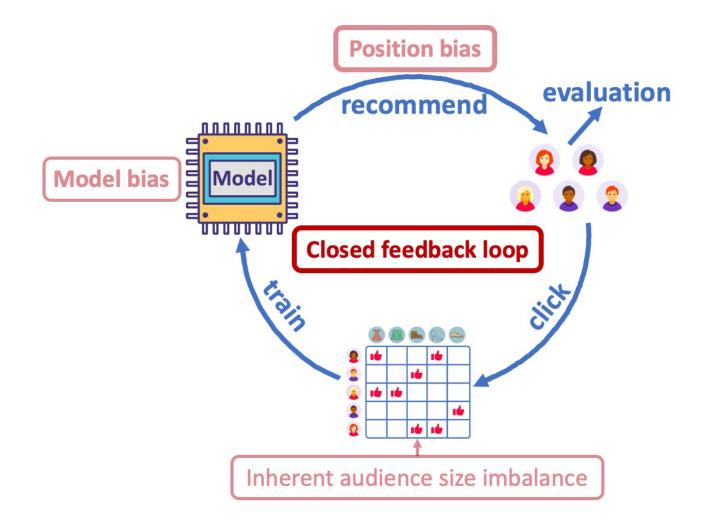


Key factor: position bias



Once the model makes recommendations, the top-ranked items are more likely to be examined by users.

Key factor: closed feedback loop



Key factor: closed feedback loop



Bias transfers through the feedback loop

As the closed loop repeating, the feedback data collected from recommendations made by the current model will impact the training of future versions of the model.

Contributions

- Conduct a comprehensive empirical study by simulation experiments to investigate how the popularity bias evolves in dynamic recommendation, and how the four factors impact the bias;
- Proposed a simple but powerful dynamic debiasing framework to adapt exiting static debiasing methods to the dynamic scenario;
- Report on extensive experiments to show the **effectiveness** of the proposed dynamic debiasing method compared with the existing static methods.

Outline

- Motivation and Introduction
- Problem Formalizations
 - Formalize the dynamic recommendation process
 - Formalize the popularity bias
- Data-driven Study
- Debiasing and Experiment

Algorithm 1: Dynamic Recommendation Process

1 Bootstrap: Randomly show *K* items to each user and collect initial clicks \mathcal{D} and train the first model ψ by \mathcal{D} ;

5

6

Algorithm 1: Dynamic Recommendation Process

1 Bootstrap: Randomly show K items to each user and collect initial clicks D and train the first model ψ by D;
2 for t = 1 : T do
3
4

Algorithm 1: Dynamic Recommendation Process

- **1 Bootstrap:** Randomly show *K* items to each user and collect initial clicks \mathcal{D} and train the first model ψ by \mathcal{D} ;
- 2 **for** t = 1 : T **do**

4

5

6

Recommend *K* items to the current user u_t by ψ ;

Algorithm 1: Dynamic Recommendation Process

- **1 Bootstrap:** Randomly show *K* items to each user and collect initial clicks \mathcal{D} and train the first model ψ by \mathcal{D} ;
- 2 **for** t = 1 : T **do**

5

6

- 3 Recommend *K* items to the current user u_t by ψ ;
- 4 Collect new clicks and add them to \mathcal{D} ;

Algorithm 1: Dynamic Recommendation Process

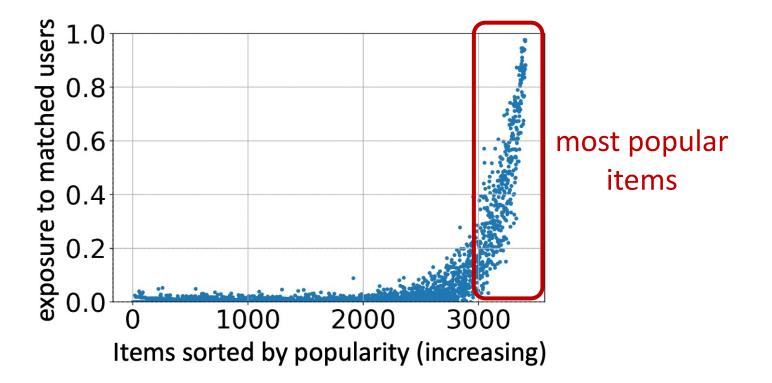
- **1 Bootstrap:** Randomly show *K* items to each user and collect initial clicks \mathcal{D} and train the first model ψ by \mathcal{D} ;
- 2 **for** t = 1 : T **do**
- Recommend *K* items to the current user u_t by ψ ;
- 4 Collect new clicks and add them to \mathcal{D} ;
- 5 **if** t%L == 0 then
- 6 Retrain ψ by \mathcal{D} ;

Problem formalization: popularity bias

Compared with less popular items, whether popular items are more likely to be correctly recommended to matched users who like them?

Problem formalization: popularity bias

- During testing, calculate the average exposure every item gets to their matched users.
- Sort items based on their popularity.
- Calculate **Gini Coefficient** of exposure over sorted items to evaluate the popularity bias. (higher Gini Coefficient, more severe bias)

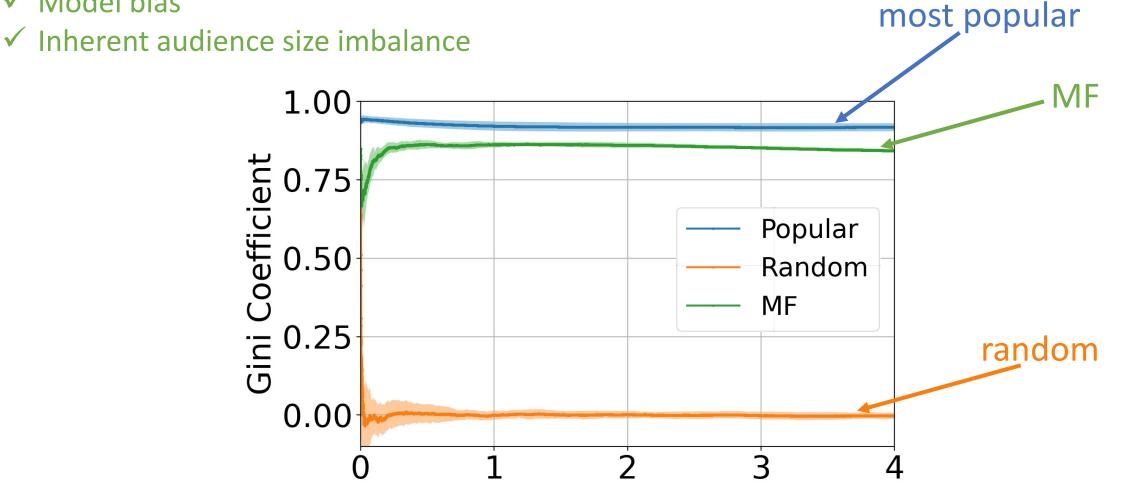


Outline

- Motivation and Introduction
- Problem Formalizations
- Data-driven Study
 - Evolution of the popularity bias
 - Impacts of the four bias factors
- Debiasing and Experiment

Data-driven study: evolution of popularity bias

- ✓ Position bias
- ✓ Closed feedback loop
- ✓ Model bias

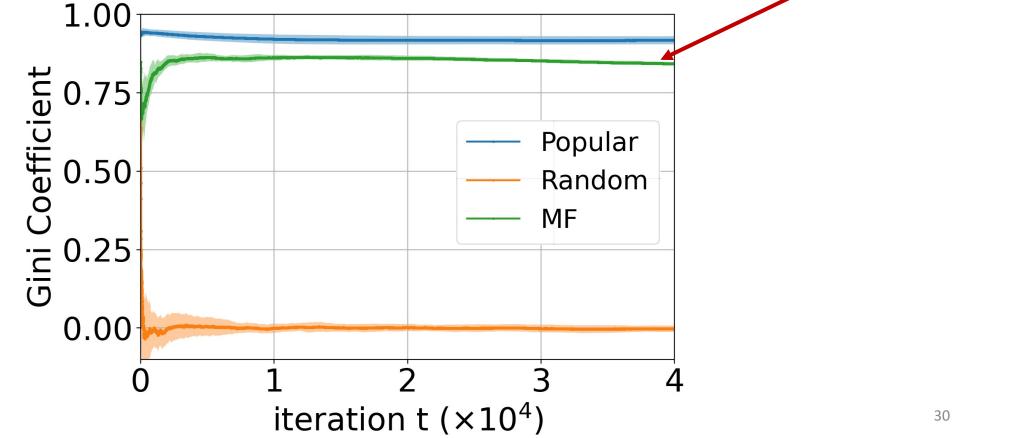


iteration t ($\times 10^4$)

Data-driven study: evolution of popularity bias

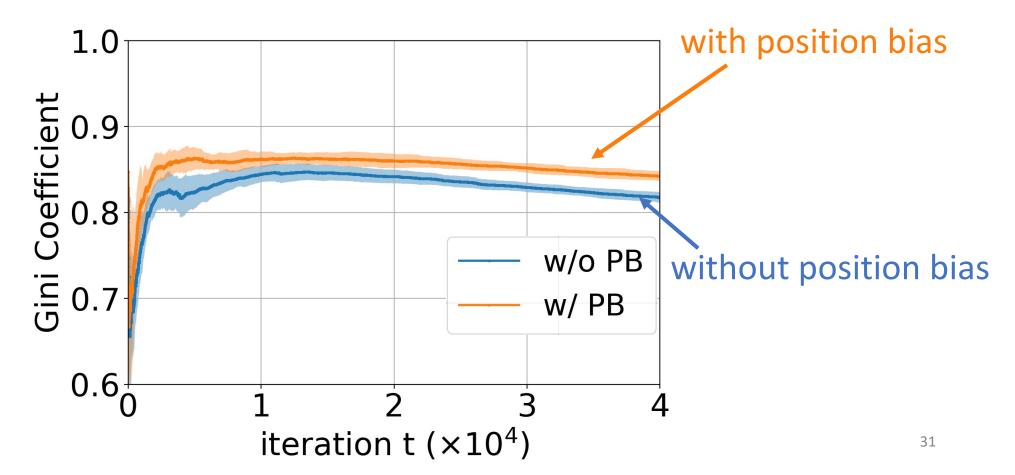
- ✓ Position bias
- ✓ Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance

Increases rapidly then keeps at a high level



X Position bias

- ✓ Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance

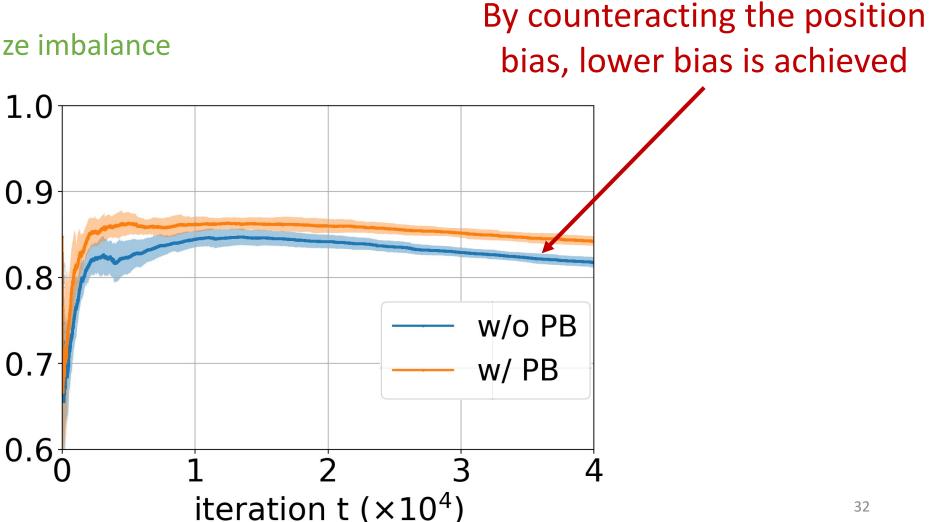


1.0

6.0 Gini Coefficient 8.0 Gini Coefficient 8.0 Coefficient

X Position bias

- ✓ Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance



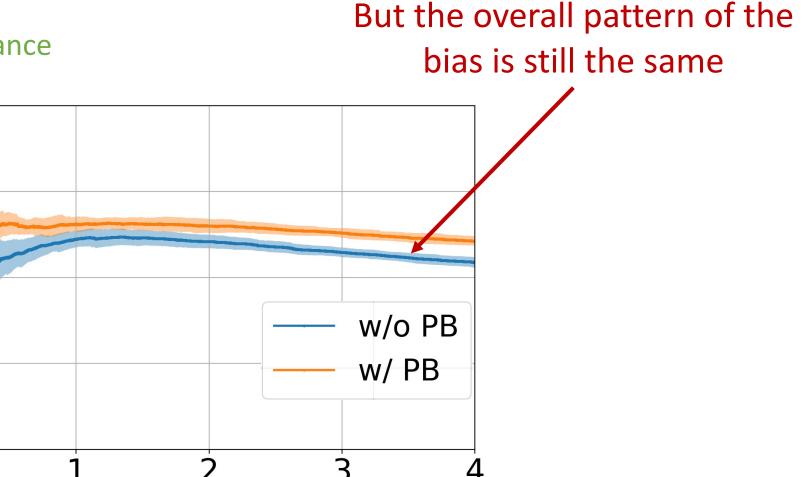
1.0

Gini Coefficient 8.0 8.0 2.0

0.6[⊥]0

X Position bias

- ✓ Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance



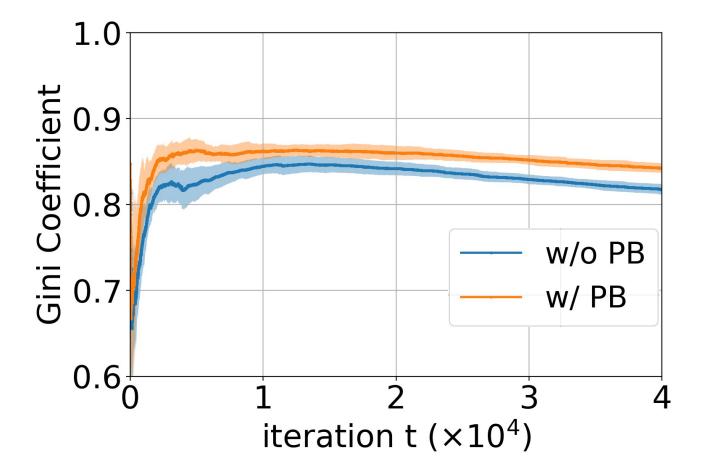
iteration t ($\times 10^4$)

X Position bias

- ✓ Closed feedback loop
- ✓ Model bias

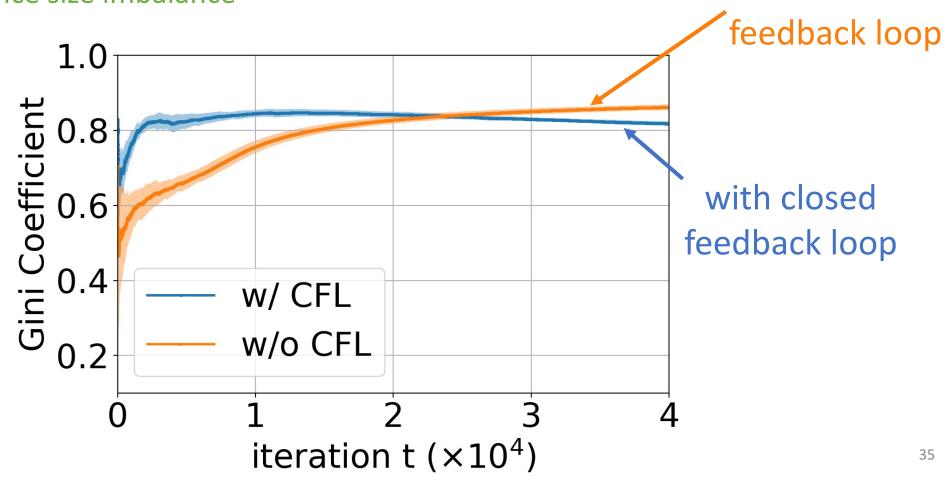
Conclusion: Position bias can intensify the popularity bias.

✓ Inherent audience size imbalance



Data-driven study: impact of closed feedback loop

- X Position bias
- X Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance

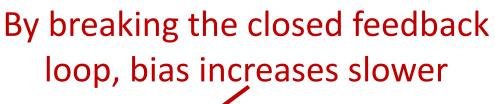


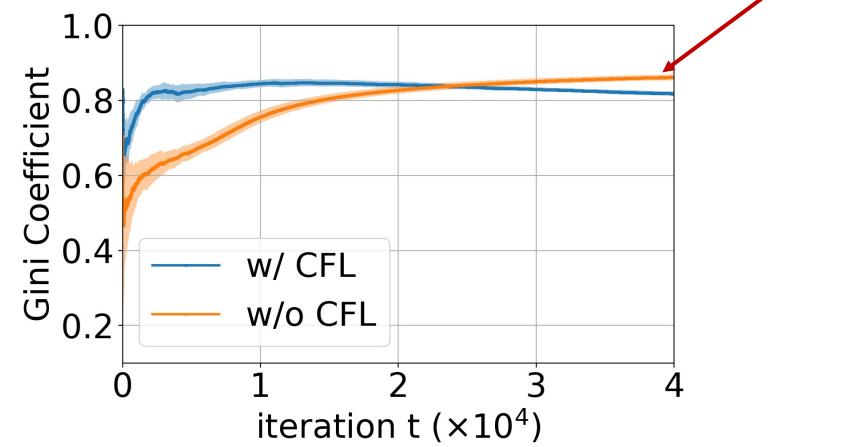
without closed

Data-driven study: impact of closed feedback loop

\boldsymbol{X} Position bias

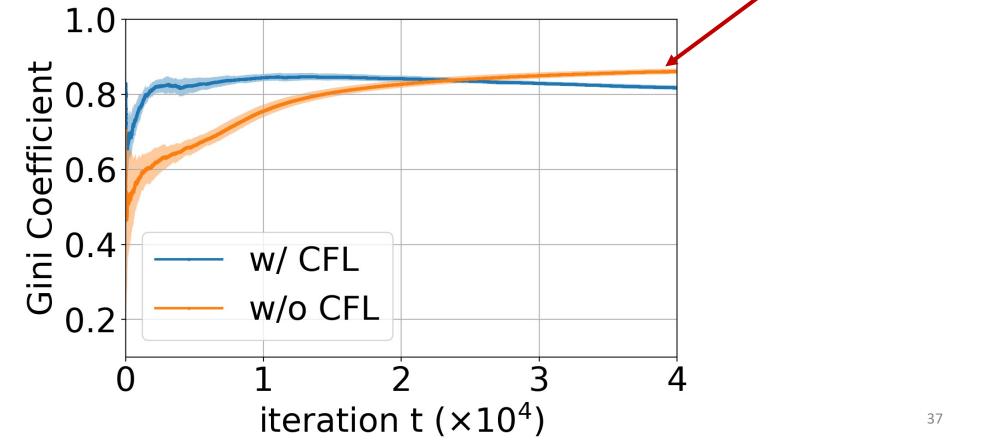
- X Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance





Data-driven study: impact of closed feedback loop

- X Position bias
- X Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance



Data-driven study: impact of closed feedback loop

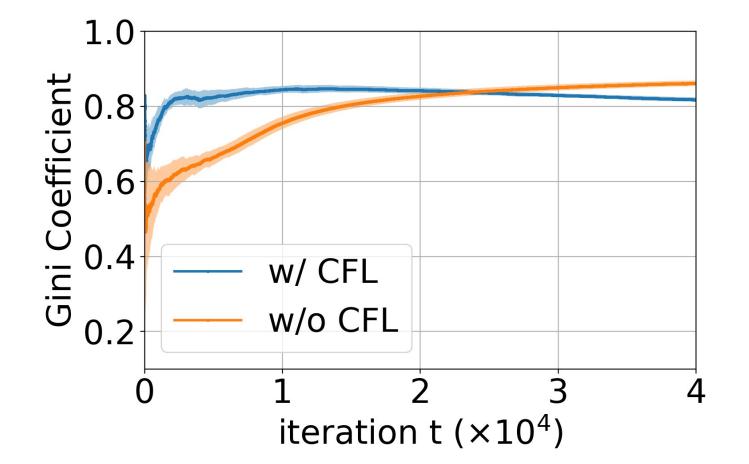
\boldsymbol{X} Position bias

X Closed feedback loop

✓ Model bias

Conclusion: Closed feedback loop can intensify the popularity bias.

✓ Inherent audience size imbalance

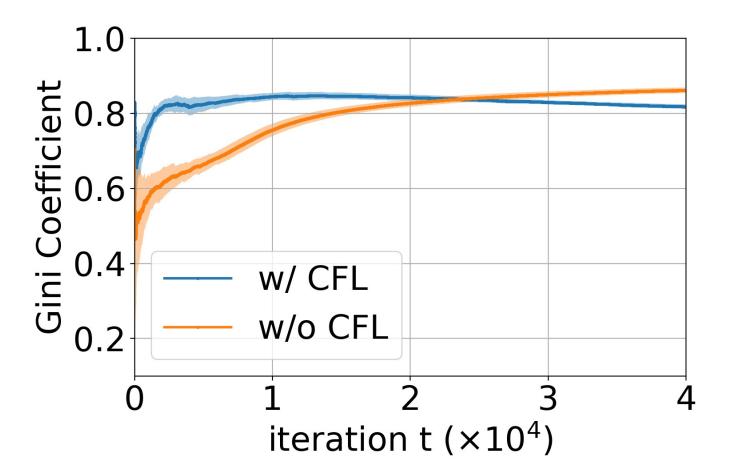


Data-driven study: impact of closed feedback loop

\boldsymbol{X} Position bias

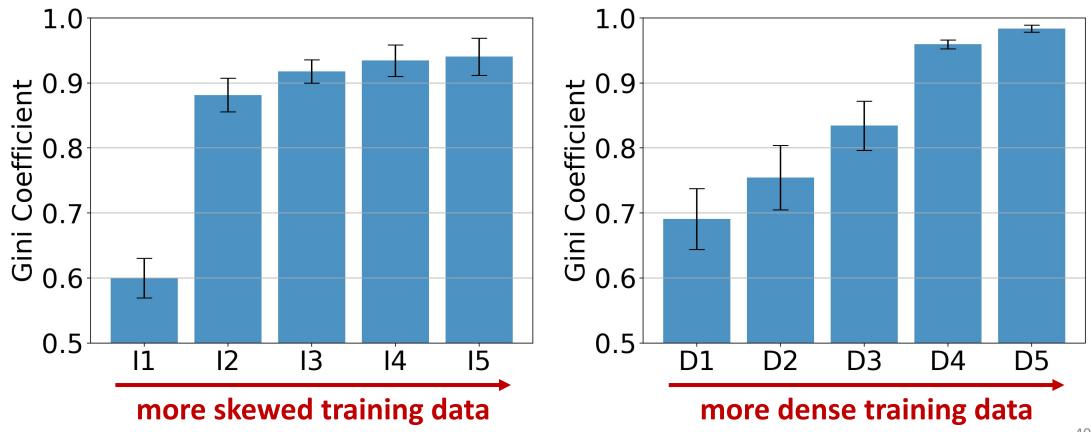
- X Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance

Conclusion: Model bias and inherent audience size imbalance are the main source of popularity bias,



Data-driven study: impact of model bias

- X Position bias
- X Closed feedback loop
- ✓ Model bias
- ✓ Inherent audience size imbalance



Data-driven study: conclusions

- Inherent audience size imbalance and model bias are the main sources of popularity bias, which can produce the bias without existence of other factors;
- Position bias and closed feedback loop can intensify the bias when inherent audience size imbalance and model bias exist;
- Higher training data **density** and greater **imbalance** can increase the effect of model bias.

Outline

- Motivation and Introduction
- Problem Formalizations
- Data-driven Study
- > Debiasing and Experiment

- 1. Adopt an **existing static debiasing method**, apply it to dynamic recommendation process by gradually **increasing debiasing strength**;
- 2. Correct predicted scores based on false positive signals.

 Adopt an existing static debiasing method, apply it to dynamic recommendation process by gradually increasing debiasing strength;

 Adopt an existing static debiasing method, apply it to dynamic recommendation process by gradually increasing debiasing strength;

Example: an existing debiasing method **Scale**

$$\widehat{r}_{u,i}^{(scaled)} = \widehat{r}_{u,i}^{(model)} / (\underbrace{C_i}_{i})^{\alpha} + \frac{C_i}{i}$$
popularity of item *i*

 Adopt an existing static debiasing method, apply it to dynamic recommendation process by gradually increasing debiasing strength;

Example: an existing debiasing method Scale

gradually increase during the dynamic recommendation process

$$\widehat{r}_{u,i}^{(scaled)} = \widehat{r}_{u,i}^{(model)} / (C_i)^{\alpha}$$

• Correct predicted scores based on false positive signals.

False positive signals: the cases that some items are recommended to some users but receive no feedback

• Correct predicted scores based on false positive signals.

The Fth time item i being recommended to user u, ranked at k_F position, and no click happened

$$P(r_{u,i} = 1 | c_{k_1} = 0, \dots, c_{k_F} = 0)$$

The probability user u likes item i given i has been recommended to u for F times and did not receive any clicks.

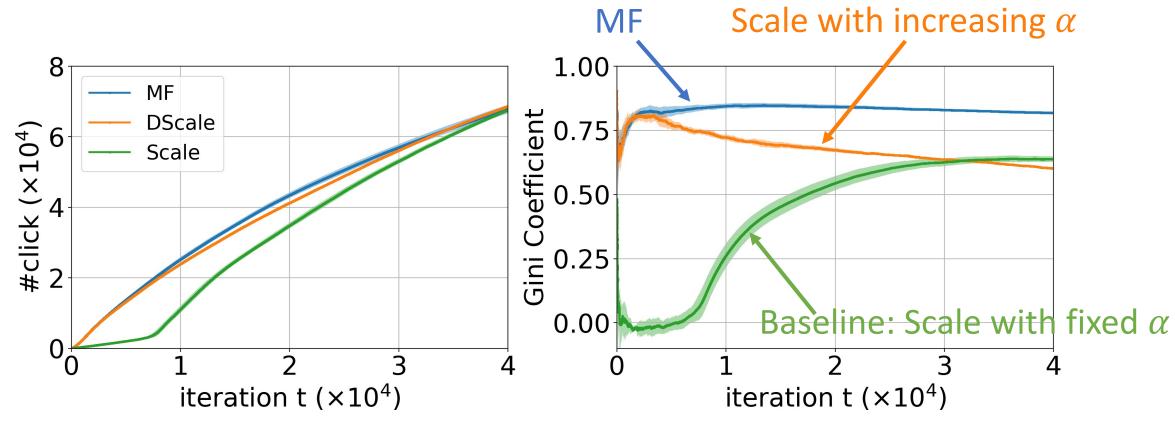
• Correct predicted scores based on false positive signals.

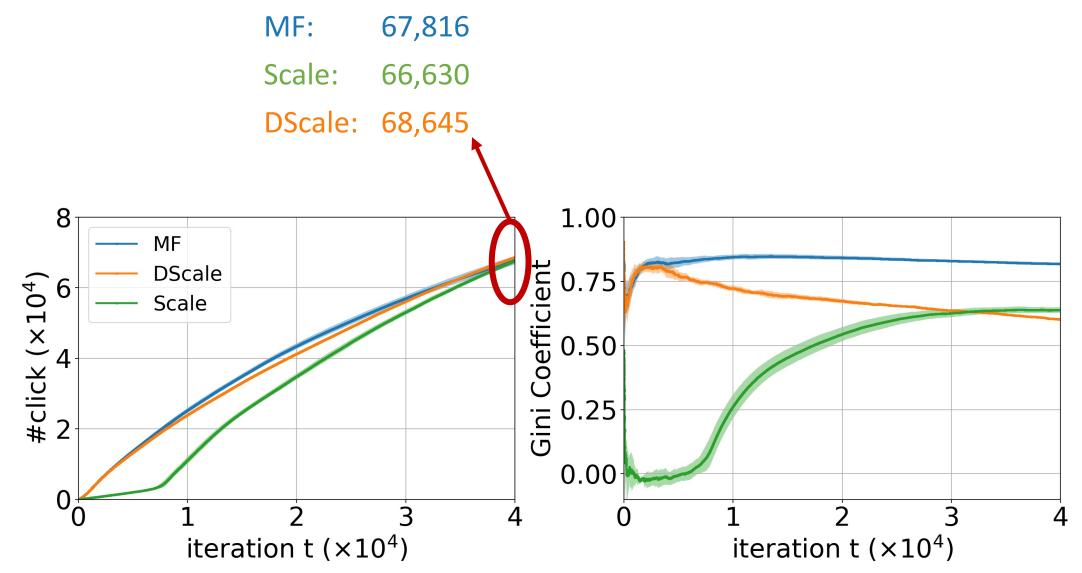
$$P(r_{u,i} = 1 | c_{k_1} = 0, ..., c_{k_F} = 0)$$

$$= 1 - \frac{1 - \theta_{u,i}}{\prod_{f=1}^{F} (1 - \delta_{k_f} \theta_{u,i})}$$
Examine probability at k_f position
(same as the position bias)

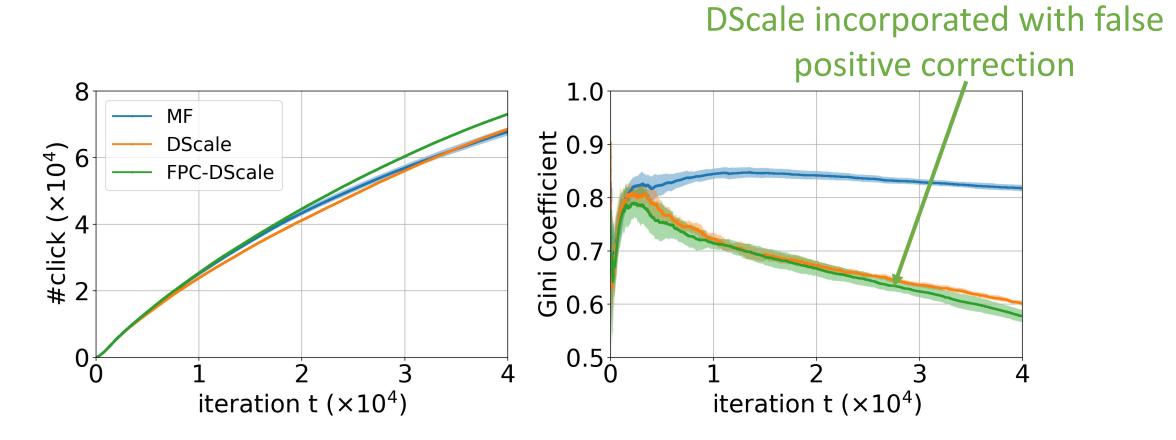
I leave the well as the second and a leave the second second second second second second second second second s

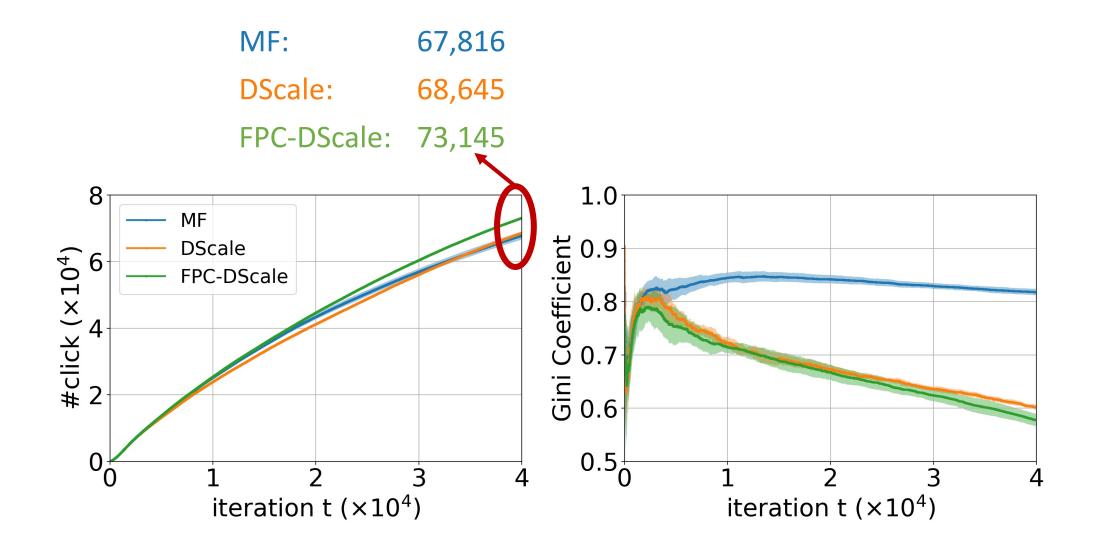
- With increasing debiasing strength, we can **continuously decrease** the bias
- Fix the debiasing strength as static debiasing method, the bias starts low but grows to high level.





- Integrate DScale and false positive correction, the popularity **bias is further decreased**;
- More clicks are collected by debiasing by the proposed method (higher recommendation utility is achieved).





More experimental details and results can be found in the paper, including:

- Detailed experiment **setup**;
- Experiments on other **datasets** of different levels of skewness;
- Experiments with other **baseline** debiasing methods;

Conclusions

- Conduct a comprehensive empirical study by simulation experiments to investigate how the popularity bias evolves in dynamic recommendation, and how the four factors impact the bias;
- Proposed a simple but powerful dynamic debiasing framework to adapt exiting static debiasing methods to the dynamic scenario;
- Report on extensive experiments to show the **effectiveness** of the proposed dynamic debiasing method to debias and also increase the recommendation utility.

Thank You!

Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee Texas A&M University

