Fairness-Aware Tensor-Based Recommendation

Ziwei Zhu, Xia Hu, and James Caverlee

Texas A&M University

Recommenders – Essential Conduits

Algorithmic Bias in Recommenders

Unfair Recommenders

Refer to: Dan Bernhardt, Stefan Krasa, and Mattias Polborn. 2008. Political polarization and the electoral effects of media bias. Journal of Public Economics 92, 5-6 (2008), 1092–1104.

Unfair Recommenders

Refer to: L. Sweeney. 2013. Discrimination in online ad delivery. Queue 11, 3 (2013), 10.

Unfair Recommenders

Refer to: Ayman Farahat and Michael C Bailey. 2012. How effective is targeted advertising?. In Proceedings of the 21st international conference on World Wide Web. ACM, 111–120.

To enhance recommendation fairness while preserving recommendation quality.

Recommend **experts** to **users** related to different **topics** based on historical user-expert interactions.

A twitter user is recognized as an **expert** related to a specific **topic** when he is added into a **Twitter List** with the topic name by **another user**.

A twitter user is recognized as an **expert** related to a specific **topic** when he is added into a **Twitter List** with the topic name by **another user**.

• We observed that distributions of liked experts with distinct genders and races are different.

We care about recommendation fairness between different genders or races.

Question

How to define fairness for recommendation task?

Statistical Parity

Statistical parity encourages a recommender to ensure **similar probability distributions** for both groups.

P[R|male] = P[R|female]

Fair Example

Existing approaches:

Existing approaches:

i. focus on **two-dimensional** matrix completion; (we have user-expert-topic)

Existing approaches:

- i. focus on **two-dimensional** matrix completion; (we have user-expert-topic)
- ii. assume there is only a single binary sensitive feature (gender: female vs. male); (we want to enhance sensitive feature of both gender and ethnicity, or even more)

Existing approaches:

- i. focus on **two-dimensional** matrix completion; (we have user-expert-topic)
- ii. assume there is only a single binary sensitive feature (gender: female vs. male); (we want to enhance sensitive feature of both gender and ethnicity, or even more)
- iii. trade-off considerable recommendation quality for improving fairness.(we want satisfactory recommendation utility)

Fairness-Aware Tensor-based Recommendation:

Fairness-Aware Tensor-based Recommendation:

 i. leverages tensor completion as the foundation that models multiple aspects simultaneously;

Biased Historical Feedbacks

Fairness-Aware Tensor-based Recommendation:

ii. uses a new **sensitive latent factor matrix** for isolating sensitive features that naturally adapt to **multi-feature** and **multi-category** cases;

Fairness-Aware Tensor-based Recommendation:

iii. utilizes a sensitive information regularizer for extracting sensitive information tainting other latent factors that promises fairness enhancement and recommendation quality preserving.

Fairness-Aware Tensor-based Recommendation:

- tensor completion; İ.
- ii. sensitive latent factor matrix;
- iii. sensitive information regularizer.

Sensitive information regularizer

Fairness-Aware Recommendation

FART can adapt to **other domains** with two, three or even **more dimensions**, not limited in the given expert recommendation task.

Remove Sensitive Information Enhance Fairness

Sensitive Latent Factor Matrices

Sensitive Dimensions

Sensitive Latent Factor Matrices

Sensitive Latent Factor Matrices

Sensitive Latent Factor Matrices

Sensitive Latent Factor Matrices

Fairness-aware Recommendation

Sensitive Latent Factor Matrices

Fairness-aware Recommendation

Reconstruct the tensor by **non-sensitive** dimensions

Fairness-aware Recommendation

Generalizing FATR – Multi-category

Generalizing FATR – Multi-feature

3D scenario: User-Expert-Topic Twitter – ethnicity of the expert as the sensitive feature (white vs. non-white);

Part of experiment is omitted. Refer to the paper for more details.

- **3D scenario**: User-Expert-Topic Twitter ethnicity of the expert as the sensitive feature (white vs. non-white);
- Varying considerations: Twelve Synthetic Expert Datasets (four levels of bias & three levels of sparsity);

- **3D scenario**: User-Expert-Topic Twitter ethnicity of the expert as the sensitive feature (white vs. non-white);
- Varying considerations: Twelve Synthetic Expert Datasets (four levels of bias & three levels of sparsity);
- Generalizing scenario: User-Expert-Topic Twitter Dataset both ethnicity (three categories) and gender (two categories) as sensitive features.

Part of experiment is omitted. Refer to the paper for more details.

Recommendation Quality: Precision@k, Recall@k, and F1@k (higher is better)

- Recommendation Quality: Precision@k, Recall@k, and F1@k (higher is better)
- Recommendation Fairness: MAD and KS (lower is better)

 $|Mean(R_1) - Mean(R_2)|$

Experiment – Baselines

We consider two variations of FATR – **FT(G)** (using Gradient Descent) and **FT(N)** (using Newton's Method)

We consider two variations of FATR – **FT(G)** (using Gradient Descent) and **FT(N)** (using Newton's Method) – in comparison with

- Ordinary Tensor Completion (OTC) Fairness-unaware
- Regularization-based Tensor Completion (RTC) Fairness-aware

We consider two variations of FATR – **FT(G)** (using Gradient Descent) and **FT(N)** (using Newton's Method) – in comparison with

- Ordinary Tensor Completion (OTC) Fairness-unaware
- Regularization-based Tensor Completion (RTC) Fairness-aware
- Ordinary Matrix Completion (OMC) Fairness-unaware
- Regularization-based Matrix Completion (RMC) Fairness-aware
- Matrix-based variations of FATR FM(G) and FM(N)

Research Questions:

- What is the different between **Matrix-based** vs. **Tensor-based**?
- How does **FATR** perform in comparison with **baselines**?

Experiment – Twitter (Matrix vs. Tensor)

• What is the different between **Matrix-based** vs. **Tensor-based**?

Recommendation Quality: Tensor-based **better** than Matrix-based (higher is better)

Methods	R@15	P@15
OMC	0.3467	0.0842
OTC	0.4384	0.0958
RMC	0.1609	0.0702
RTC	0.3003	0.0515
FM(G)	0.4045	0.0891
FT(G)	0.4180	0.0870
FM(N)	0.3298	0.0687
FT(N)	0.3975	0.0786

Experiment – Twitter (Matrix vs. Tensor)

- What is the different between Matrix-based vs. Tensor-based?
- Recommendation Fairness: Tensor-based worse than Matrix-based for baselines (lower is better)

Methods	KS	MAD
OMC	0.1660	0.0122
OTC	0.3662	0.0333
RMC	0.1521	0.0086
RTC	0.2003	0.0171
FM(G)	0.0523	0.0037
FT(G)	0.0195	0.0024
FM(N)	0.0245	0.0044
FT(N)	0.0173	0.0029

Experiment – Twitter (Matrix vs. Tensor)

- What is the different between Matrix-based vs. Tensor-based?
 - Recommendation Fairness: Tensor-based better than Matrix-based for FATR (lower is better)

Methods	KS	MAD
OMC	0.1660	0.0122
OTC	0.3662	0.0333
RMC	0.1521	0.0086
RTC	0.2003	0.0171
FM(G)	0.0523	0.0037
FT(G)	0.0195	0.0024
FM(N)	0.0245	0.0044
FT(N)	0.0173	0.0029

Experiment – Twitter (FATR vs. Baselines)

• How does **FATR** perform in comparison with **baselines**?

Recommendation Quality: FATR better than RTC (higher is better)

Methods	R@15	P@15
OMC	0.3467	0.0842
OTC	0.4384	0.0958
RMC	0.1609	0.0702
RTC	0.3003	0.0515
FM(G)	0.4045	0.0891
FT(G)	0.4180	0.0870
FM(N)	0.3298	0.0687
FT(N)	0.3975	0.0786

Experiment – Twitter (FATR vs. Baselines)

• How does **FATR** perform in comparison with **baselines**?

Recommendation Quality: FATR slightly worse than OTC (higher is better)

R@15	P@15
0.3467	0.0842
0.4384	0.0958
0.1609	0.0702
0.3003	0.0515
0.4045	0.0891
0.4180	0.0870
0.3298	0.0687
0.3975	0.0786
	R@15 0.3467 0.4384 0.1609 0.3003 0.4045 0.4180 0.3298 0.3975

Experiment – Twitter (FATR vs. Baselines)

• How does **FATR** perform in comparison with **baselines**?

Recommendation Fairness: FATR better than RTC and OTC (lower is better)

Methods	KS	MAD
OMC	0.1660	0.0122
OTC	0.3662	0.0333
RMC	0.1521	0.0086
RTC	0.2003	0.0171
FM(G)	0.0523	0.0037
FT(G)	0.0195	0.0024
FM(N)	0.0245	0.0044
FT(N)	0.0173	0.0029

Research Questions:

- Is FATR **robust** to the impact of data **bias** (four levels: low, medium, high, extreme)?
- Is FATR **robust** to the impact of data **sparsity** (three levels: low, medium, high)?

Experiment – Synthetic (Impact of Bias)

• Is FATR robust to the impact of data bias?

Recommendation Quality (higher is better)

Experiment – Synthetic (Impact of Bias)

• Is FATR robust to the impact of data bias?

FATR provides relatively high recommendation quality under different bias situations

Experiment – Synthetic (Impact of Bias)

• Is FATR robust to the impact of data bias?

FATR enhances fairness to a great extent under different bias situations

Experiment – Synthetic (Impact of Sparsity)

• Is FATR **robust** to the impact of data **sparsity**?

FATR provides relatively high recommendation quality under

different sparsity situations

Experiment - Synthetic (Impact of Sparsity)

• Is FATR **robust** to the impact of data **sparsity**?

FATR enhances fairness to a great extent under different sparsity situations

Experiment – Synthetic (Impact of Sparsity)

Besides ...

With data denser, recommendation unfairness goes more severe.

Experiment – Generalizing

• How does FATR perform for **multi-feature** and **multi-category** case?

F: Female; **M**: Male **AA**: American African; **W**: White; **A**: Asian

Experiment – Generalizing

How does FATR perform for multi-feature and multi-category case?

FATR preserves high recommendation quality.

F: Female; **M**: Male **AA**: American African; **W**: White; **A**: Asian

Experiment – Generalizing

• How does FATR perform for **multi-feature** and **multi-category** case? FATR **enhances** fairness well for both ethnicity and gender.

F: Female; **M**: Male **AA**: American African; **W**: White; **A**: Asian

Conclusion and Future Work

Conclusions:

- Propose a novel tensor-based framework FATR to enhance fairness while maintaining recommendation quality;
- FATR can handle **multi-feature** and **multi-category** scenarios;
- Extensive experiments show the **effectiveness** of FATR and **robustness** to data **bias** and **sparsity**.

Future Work:

- Extend to alternative notions of fairness beyond statistical parity;
- Extend to rating prediction tasks for recommenders with explicit rating data.

Thank You!

Ziwei Zhu, Xia Hu, and James Caverlee

Texas A&M University

10/17/18

