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ABSTRACT
Tensor-based methods have shown promise in improving upon

traditional matrix factorization methods for recommender systems.

But tensors may achieve improved recommendation quality while

worsening the fairness of the recommendations. Hence, we pro-

pose a novel fairness-aware tensor recommendation framework

that is designed to maintain quality while dramatically improving

fairness. Four key aspects of the proposed framework are: (i) a new

sensitive latent factor matrix for isolating sensitive features; (ii) a

sensitive information regularizer that extracts sensitive informa-

tion which can taint other latent factors; (iii) an effective algorithm

to solve the proposed optimization model; and (iv) extension to

multi-feature and multi-category cases which previous efforts have

not addressed. Extensive experiments on real-world and synthetic

datasets show that the framework enhances recommendation fair-

ness while preserving recommendation quality in comparison with

state-of-the-art alternatives.
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1 INTRODUCTION
Recommenders are essential conduits: they shape the media we

consume, the jobs we seek, and the friendships and professional

contacts that form our social circles. And yet, recommenders may be

subject to algorithmic bias that can lead to negative consequences

in the kinds of recommendations that are made. For example, job

recommenders can target women with lower-paying jobs than

equally-qualified men [6]. News recommenders can favor particular

political ideologies over others [2]. And even ad recommenders can

exhibit racial discrimination [26].

Overcoming such algorithmic bias has been of keen interest in

classification tasks (e.g., recidivism prediction, loan approval) [5, 22,
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Figure 1: Overview of FATR: sensitive features are isolated
(top right), then sensitive information is extracted (bottom
right), resulting in fairness-aware recommendation.

25, 30, 31], but has only recently been on the rise for recommender

systems [12, 13, 28, 29]. Recommender-based approaches have typ-

ically focused on fairness, where the goal is to maintain some level

of neutrality in recommendation, e.g., balancing male vs. female or

old vs. young. While encouraging, most existing approaches make

a number of limiting assumptions: (i) focusing on two-dimensional

matrix factorization that has been the cornerstone of recommender

research in the past ten years [11, 19, 21]; (ii) assuming there is

only a single binary case (e.g., male vs. female); and (iii) trading-off

considerable recommendation quality for improving the fairness

characteristics of the recommender.

In contrast, we aim in this paper to create a new tensor-based
framework that can overcome these limitations for implicit recom-

mendation (i.e. where implicit feedback is available, but no explicit

ratings). Tensors, as n-dimensional generalizations ofmatrices, have

shown great promise across a variety of data mining and analytics

tasks – e.g., [8, 17, 23, 24] – where their multi-aspect models natu-

rally fit domains that go beyond two dimensions. Recommenders,

in particular, are well-suited for tensors that can capture multi-way

interactions among users, items, and contexts (e.g., time, location).

But there are key challenges: How can wemodel sensitive attributes

(e.g., age, gender) in a tensor-based recommender? How canwemin-

imize the impact of these sensitive attributes on recommendations,

which can be correlated with non-sensitive attributes [16, 31])?

How can we build an optimization model for this problem and

efficiently solve it? And can such efforts maintain recommendation

quality while improving fairness?

Toward answering these challenges, this paper proposes a novel

Fairness-Aware Tensor-based Recommendation framework called

FATR. The overview is illustrated in Figure 1. The intuition of

the proposed framework is that the latent factor matrices of the

tensor completion model contain latent information related to the

sensitive attributes, which introduces the unfairness. Therefore, by

isolating and then extracting the sensitive information from the
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latent factor matrices, we may be able to improve the fairness of

the recommender itself. Concretely, we propose (i) a new sensitive
latent factor matrix for isolating sensitive features; (ii) a sensitive

information regularizer that extracts sensitive information which

can taint other latent factors; and (iii) an effective algorithm to

solve the proposed optimization model.

In sum, the contributions of this paper are as follows.

• First, FATR is built on a tensor foundation that can analyze mul-

tiple aspects simultaneously, promising potentially better rec-

ommendation quality than matrix-based approaches, while also

supporting traditional two-dimensional data (since tensors are

generalizations of matrices).

• Second, moving beyond binary sensitive features, FATR supports

multi-feature cases with multisided features (e.g., recommenda-

tion where both age of items and gender of users are considered

sensitive) and multi-category cases (e.g., where the sensitive

attribute can take on multiple values like Low, Medium, and

High) which are challenging for traditional regularization-based

approaches [14, 29].

• Finally, we empirically show that FATR can provide recommen-

dation quality on par with traditional (unfair) recommenders

while significantly improving the fairness of recommendations,

and does so better than state-of-the-art alternatives.

2 PRELIMINARIES
In this section, we first introduce the notations used in this paper

and the basics of tensor-based recommendation, then we discuss

fairness in recommendation.

2.1 Notations
Notations and definitions in this paper are presented as follows.

Tensors are denoted by Euler script letters likeXXX, matrices are de-

noted by boldface uppercase letters like A, and vectors are denoted

by boldface lowercase letters like a. The [i1, . . . , iN ] entry of the

tensorXXX is denoted asXXX[i1, . . . , iN ]. We denote the pseudo inverse,

transpose, and Frobenius norm of a matrix A respectively by A†,
A⊤, and ∥A∥F. Notation ⟦·⟧ represents the Kruskal operator. Nota-
tions ⊙, ⊛, and ◦ denote the Khatri-Rao product, Hadamard product,

and vector outer product, respectively. Besides, we use the syntax

similar to Python to denote the matrix slicing operation (the index

starts from 1), for example A[:, 2 :] denotes the matrix A without

the first column. And we use [A B] to present the horizontal ma-

trices concatenating operation. The main symbols and operations

are listed in Table 1. More details about tensor calculations can be

found in [18].

2.2 Tensor-Based Recommendation
Matrix factorization is the foundation of many modern recom-

menders [20]. These matrix factorization methods estimate missing

ratings by uncovering latent features of users and items. Building

on these user-item interactions, tensor-based methods have been

growing in appeal recently since they can naturally model multi-

way (or multi-aspect) interactions [8, 17, 23, 24]. For example, a

3-order tensor could represent users, items, and time of day. Ad-

ditional contexts can lead to an N-way tensor. And, of course, the

classic user-item problem can be viewed as a 2-way tensor.

Notations Definitions

XXX ∈ RI1×I2×. . .×IN N th
-order tensor

X(n) ∈ RIn×(Π
N
i,n Ii ) Mode-n unfolding matrix of tensorXXX

⟦ ·⟧ Kruskal operator, e.g.,XXX ≈ ⟦A1, . . . , AN ⟧

⊙ Khatri-Rao product

⊛ Hadamard product

◦ Vector outer product

(Ak )⊙k,n AN ⊙ . . . ⊙ An+1 ⊙ An−1 ⊙ . . . ⊙ A1

A[:, i : j] Matrix slicing operation (index starts from 1)

[A B] Matrices concatenating operation (horizontal)

Table 1: Main symbols and operations.
Formally, given anN-order tensorTTT representing the users, items,

and multiple aspects related to the items, the basic tensor-based

recommendation model can be defined as:

minimize

XXX,A1,A2, ...,AN
LLL = ∥XXX − ⟦A1,A2, . . . ,AN ⟧∥2F

subject to ΩΩΩ ⊛XXX = TTT,

whereXXX denotes the complete preferences of users, TTT denotes the

observations, ΩΩΩ is a non-negative indicator tensor with the same

size as XXX with ΩΩΩ[i1, . . . , iN ] = 1 indicating that we observe the

preference, otherwise ΩΩΩ[i1, . . . , iN ] = 0, A1,A2, . . . ,AN are the

latent factor matrices of all the modes of the tensor.

The objective function can be written in the unfolding form so

that it can be solved by optimization algorithms, as follows:

minimize

XXX,A1, ...,AN
LLL = ∥X(n) − An [(Ak )⊙k,n ]⊤∥2F

subject to Ω(n) ⊛ X(n) = T(n),
(1)

where Ω(n) is the mode-n unfolding of the indicator tensor ΩΩΩ, T(n)
is the mode-n unfolding of the tensor TTT, and X(n) is the mode-n
unfolding of the tensorXXX. To solve this basic recommendation by

tensor completion, we can use Alternating Least Squares (ALS),

which optimizes every latent factor matrix by linear least squares

in each iteration. The update rule is:

Ân ← X(n)[[(Ak )⊙k,n ]⊤]†,
where Ân is the updated latent factor matrix of An .

2.3 Fairness in Recommendation
Such a tensor-based approach has no notion of fairness. Here, we

assume that there exists a sensitive attribute for one mode of the

tensor, and this mode is a sensitive mode. For example, the sensitive

attribute could correspond to gender, age, ethnicity, location, or

other domain-specific attributes of users or items in the recom-

menders. The feature vectors of the sensitive attributes are called

the sensitive features. Further, we call all the information related

to the sensitive attributes as sensitive information, and note that

attributes other than the sensitive attributes can also contain sensi-

tive information [16, 31]. While there are emerging debates about

what constitutes algorithmic fairness [5], we adopt the commonly

used notion of statistical parity. Statistical parity encourages a rec-

ommender to ensure similar probability distributions for both the

dominant group and the protected group as defined by the sen-

sitive attributes. Formally, we denote the sensitive attribute as a

random variable S , and the preference rating in the recommender

system as a random variable R. Then we can formulate fairness



as P[R] = P[R |S], i.e. the preference rating is independent of the

sensitive attribute. This statistical parity means that the recom-

mendation result should be unrelated to the sensitive attributes.

For example, a job recommender should recommend similar jobs

to men and women with similar profiles. Note that some recent

works [9, 28, 29] have argued that statistical parity may be overly

strict, resulting in poor utility to end users. Our work here aims to

achieve comparable utility to non-fair approaches, while providing

stronger fairness.

3 FAIRNESS-AWARE TENSOR-BASED
RECOMMENDATION

Given this notion of fairness, we turn in this section to the de-

sign of a novel Fairness-Aware Tensor-based Recommendation

framework (FATR) – as illustrated in Figure 2. The intuition of

the proposed framework is that the latent factor matrices of the

tensor completion model contain latent information related to the

sensitive attributes, which introduces the unfairness. Therefore, by

isolating and then extracting the sensitive information from the

latent factor matrices, we may be able to improve the fairness of

the recommender itself.

In the rest of this section, we aim to address four key questions:

(i) How can we represent (and ultimately isolate) the sensitive at-

tributes in the tensor completion model? (ii) How do we extract all

the sensitive information into the isolated explicit representation?

(iii) How can we eliminate the extracted sensitive information from

the tensor completion model? and (iv) How do we solve the new

fairness-aware recommendation model? In the following, we ad-

dress these questions in turn. We focus in this section on a single

binary sensitive attribute for mode-n (e.g., gender). In Section 4, we

will generalize to consider multi-feature and multi-category cases.

3.1 Isolating Sensitive Features
In conventional tensor completion, the sensitive features will min-

gle with other features and distribute over different dimensions in

the latent factor matrices, which makes it difficult to extract them.

For example, a 3-way tensor of user-expert-topic can be factorized

into three latent factor matrices [8], where the feature vector of a

sensitive attribute for the experts like gender is mixed with other

features and represented by the latent factors, which means that

the sensitive information hides in the expert latent factor matrix.

We propose to first isolate the impact of the sensitive attribute

by plugging the sensitive features into the latent factor matrix. For

instance, in our user-expert-topic example, we can create one vector

s0 with 1 representing male and 0 representing female, and another

vector s1 with 1 indicating female and 0 indicating male. s0 and s1
together form a matrix, denoted as Sensitive Features S. We put S to

the last two columns of the latent factor matrix of sensitive mode

mode-n. Then we construct a new sensitive latent factor matrix:
Definition (Sensitive Latent Factor Matrix). Given the latent factor

matrix An ∈ Rdn×r of the sensitive mode mode-n, where r is the
dimension of the latent factors and dn is the number of entities

of the mode-n. We split An horizontally into two parts: matrix

A′n ∈ Rdn×(r−2) and A′′n ∈ Rdn×2. If A′′n is forced to take the same

values as the sensitive features S ∈ Rdn×2, then the new matrix

Ãn = [A′n S] is called sensitive latent factor matrix.

The matrix A′n represents the non-sensitive dimensions, while
A′′n represents the sensitive dimensions (where the corresponding
dimensions in other non-sensitive factor latent matrices are also

called sensitive dimensions). Thus, sensitive dimensions of the sen-

sitive latent factor matrix will take the same values of the sensitive

features. In this way, we can explicitly represent the sensitive at-

tributes and isolate them from non-sensitive attributes in the latent

factor matrix. Hence, we can update the tensor-based recommender

in Section 2.2 with the following objective function:

minimize

XXX,A1, ...,Ãn, ...,AN

LLL = ∥XXX − ⟦A1, . . . , Ãn , . . . ,AN ⟧∥2F

subject to ΩΩΩ ⊛XXX = TTT,

Ãn = [A′n A′′n ],
A′′n = S.

3.2 Extracting Sensitive Information
By isolating the sensitive features, we provide a first step toward

improving the fairness of the recommender. But there may still

be sensitive information that resides in non-sensitive dimensions.

To extract this remaining sensitive information, we propose an

additional constraint that the non-sensitive dimensions should be

orthogonal to the sensitive dimensions in the sensitive latent factor

matrix based on the following theorem.

Theorem. If one non-sensitive dimension is not perpendicular to

all the sensitive dimensions, then this dimension is related to the

sensitive attribute.

Proof. Regarding all dimensions in the sensitive latent factor ma-

trix as vectors in a high dimensional space. If the angle between one

non-sensitive dimension vector v and the plane ps1,s2 decided by

sensitive features s1 and s2 is not 90◦, then v can be resolved into

two vectors v1 and v2 on the same directions as s1 and s2, and an-

other vector v3 perpendicular to ps1,s2 . Therefore, v = v1 + v2 + v3,
and v1 and v2 can be merged into s1 and s2 when reconstructing the
tensor as shown in Equation (2), which changes the values of sensi-

tive dimensions, i.e., this latent factor represented by dimension v
is related to the sensitive attribute.

XXX ≈ a(1)
1
◦ a(1)

2
◦ a(1)

3
+ . . . + a(r−2)

1
◦ a(r−2)

2
◦ v

+ a(r−1)
1

◦ a(r−1)
3

◦ s1 + a(r )
1
◦ a(r )

2
◦ s2

= a(1)
1
◦ a(1)

2
◦ a(1)

3
+ . . . + a(r−2)

1
◦ a(r−2)

2
◦ v3

+ l1 · a(r−2)
1

◦ a(r−2)
2

◦ s1 + l1 · a(r−2)
1

◦ a(r−2)
2

◦ s2

+ a(r−1)
1

◦ a(r−1)
3

◦ s1 + a(r )
1
◦ a(r )

2
◦ s2

= a(1)
1
◦ a(1)

2
◦ a(1)

3
+ . . . + a(r−2)

1
◦ a(r−2)

2
◦ v3

+ (a(r−1)
1

◦ a(r−1)
2

+ l1 · a(r−2)
1

◦ a(r−2)
2
) ◦ s1

+ (a(r )
1
◦ a(r )

2
+ l2 · a(r−2)

1
◦ a(r−2)

2
) ◦ s2,

(2)

where a(1...r )
1

, a(1...r )
2

, and a(1...r )
3

are the columns in the three

latent factor matrices, l1is the scale coefficient between s1 and v1
so that l1 · s1 = v1, and l2 is from l2 · s2 = v2.

After extracting the sensitive information, all the sensitive in-

formation is gathered in the isolated sensitive dimensions. Then

we can have a new objective function for the tensor completion as



Figure 2: FATR isolates sensitive features in the latent matrix with non-sensitive dimensions orthogonal to them and elimi-
nates the sensitive information by removing the sensitive dimensions.XXX is the tensor with bias, and X̃XX is the fairness-enhanced
recommendation tensor.

shown in Equation (3).

minimize

XXX,A1, ...,A′n, ...,AN
LLL = ∥XXX − ⟦A1, . . . , Ãn , . . . ,AN ⟧∥2F

+
λ

2

∥A′′n
⊤A′n ∥2F +

γ

2

N∑
i=1
∥Ai ∥2

F

subject to ΩΩΩ ⊛XXX = TTT,

Ãn = [A′n A′′n ],
A′′n = S,

(3)

where

λ

2

∥A′′n ⊤A′n ∥2F is the orthogonal constraint term, λ is the trade-

off parameter,

γ

2

∑N
i=1∥Ai ∥2

F
is the L2-norm constraint to the norms

of the latent factor matrices so that the minimizing of

λ

2

∥A′′n ⊤A′n ∥2F
is because the cosine angles are close to zero rather than because

the norms of columns in A′′n or A′n are small (if it is this case, norms

of other latent factor matrices will get larger, which will increase

the value of the term

γ

2

∑N
i=1∥Ai ∥2

F
), γ is the trade-off parameter

of this L2-norm term.

3.3 Fairness-Aware Recommendation
After the above two steps, we can get the new latent factor matrices

A1, . . . , Ãn , . . . ,AN , whose sensitive dimensions hold features ex-

clusively related to the sensitive attributes. And their non-sensitive

dimensions are decoupled from the sensitive attributes. Thus, we

can derive the fairness-enhanced recommendation by combining

these matrices after removing their sensitive dimensions as:

X̃XX← ⟦A′
1
, . . . ,A′n , . . . ,A

′
N ⟧,

where X̃XX is the fairness-enhanced tensor completion result, and

A′
1
, . . . ,A′n , . . . ,A′N are the non-sensitive dimensions of the latent

factor matrices (i.e. the first r − 2 columns in A1, . . . , Ãn , . . . ,AN ).

3.4 Optimization Algorithms
To solve the optimization problem in Equation (3), we need to first

rewrite the objective function to be the unfolding matrix form. For

Algorithm 1: FATR Solver

Input: TTT, ΩΩΩ, r , S, n, α , λ, γ , tol ;
Output: X̃XX, {Ai }Ni=1

1 Randomly Initialize {Ai ∈ RIi×r }Ni=1;
2 repeat
3 for i = 1 : N do
4 if i == n then
5 Update A′n using (7);

6 else
7 Update Ai using (6);

8 Update A′n ← A′n − α
∂FFF

∂A′n
;

9 Form Ãn ← [A′n S];
10 UpdateXXX← TTT +ΩΩΩ ⊛ ⟦A1, . . . , Ãn , . . . ,AN ⟧;

11 until ∥XXXpre −XXX∥F/∥XXXpre∥F < tol ;

12 Update X̃XX← ⟦A′
1
, . . . ,A′n , . . . ,A′N ⟧;

the sensitive mode mode-n, the unfolding form is in Equation (4).

minimize

XXX,A1, ...,A′n, ...,AN
LLL = ∥X(n) − A′′n (B′′n )⊤ − A′n (B′n )⊤∥2F

+
λ

2

∥A′′n
⊤A′n ∥2F +

γ

2

N∑
i=1
∥Ai ∥2

F

subject to Ω(n) ⊛ X(n) = T(n),

Bn = [(Ak )⊙k,n ],
B′n = Bn [:, : r − 2],
B′′n = Bn [:, r − 1 :],
A′′n = S,

(4)

where Bn is the result of the Khatri-Rao product of all the latent

factor matrices without mode-n, B′n is the first r − 2 dimensions of

Bn , and B′′n is the last 2 dimensions of Bn .
For non-sensitive modes (denoted asm), the unfolding objective

function is shown in Equation (5).



minimize

XXX,A1, ...,AN
LLL = ∥X(m) − Am [(Ak )⊙k,m ]⊤∥2F

+
λ

2

∥A′′n
⊤A′n ∥2F +

γ

2

N∑
i=1
∥Ai ∥2

F

subject to Ω(m) ⊛ X(m) = T(m), A′′n = S.

(5)

Equation (4) cannot be solved by ALS because of

λ

2

∥A′′n ⊤A′n ∥2F ,

but Equation (5) can be solved by ALS because

λ

2

∥A′′n ⊤A′n ∥2F is

a constant term for non-sensitive modes. We can use Gradient

Descent to solve them together, but its performance is not as good

as ALS for tensor completion task. However, if we can separate

λ

2

∥A′′n ⊤A′n ∥2F from the objective function and optimize it alone, we

can efficiently and effectively solve the problem. Thus, we propose

a hybrid optimization algorithm which treats the sensitive and

non-sensitive modes differently. It follows the ALS rule to update

the non-sensitive modes in each iteration. For the sensitive mode

mode-n, we first use ALS to update A′n with

λ

2

∥A′′n ⊤A′n ∥2F being

considered as a constant term, and then use Gradient Descent to

update A′n again only to minimize

λ

2

∥A′′n ⊤A′n ∥2F . The update rule
for the non-sensitive modes is defined in rule (6), and the first ALS

step for the sensitive mode mode-n uses update rule (7).

Âm ← X(m)(Ak )⊙k,m [γ I + [(Ak )⊙k,m ]⊤(Ak )⊙k,m ]†, (6)

Ân
′ ← [X(n) − A′′n (B′′n )⊤]B′n [γ I + (B′n )⊤B′n ]†, (7)

where Âm is the updated non-sensitive latent factor matrix, Ân
′
is

the updated non-sensitive dimensions of the sensitive latent factor

matrix, I is an identity matrix.

In the second optimization step for the sensitive mode, we need

the gradient of FFF =
λ

2

∥A′′n ⊤A′n ∥2F , which is calculated by

∂FFF

∂A′n
=

λA′′n (A′′n )⊤A′n .
The entire optimization process is described in Algorithm 1.

We can also use Newton’s method to replace gradient descent,

which has the advantages of fast convergence speed and less effort

of tedious learning rate tuning. Newton’s method requires the

second-order derivative of FFF, which is calculated by:

∂2FFF

∂A′n∂A′⊤n
=

λA′′n A′′⊤n .

Finally, line 8 of Algorithm 1 should be modified to be “Update

A′n ← A′n − (
∂2FFF

∂A′n∂A′⊤n
)† ∂FFF
∂A′n

”.

4 GENERALIZING FATR
So far, we have focused on a single binary sensitive attribute. We

show here how to handle multi-feature cases (i.e., there are more

than one sensitive attributes) and multi-category cases (i.e., the at-

tribute can take more than two values). We also consider multisided

attributes (i.e., more than one mode is considered sensitive), which

is important in real-world applications [3]. Such multi-feature and

multi-category cases are challenging for traditional regularization-

based approaches [14, 29] since a regularization term can only

account for fairness between two groups defined by one binary

Figure 3: In the case of multi-category sensitive dimensions
(e.g., by ethnicity), this example shows how to generate the
sensitive latent factor matrix.

attribute. Bymissing themulti-way interactions amongmultiple cat-

egorical sensitive attributes, such a regularization-based approach

may lead to less effective (and less fair) recommendation. However,

the multi-feature and multi-category problems fit naturally into

the proposed FATR framework.

For the multi-feature case, we need to put all the sensitive fea-

tures into the corresponding sensitive latent factor matrices, and

add the orthogonal constraints to all the sensitive modes to isolate

and extract all the sensitive information. For the multi-category

case, we need to have c columns in the sensitive dimensions if the

attribute can take c distinct values. Hence, the binary-feature case
is just a special multi-category case where c = 2. Every dimension

only indicates one specific category, for example, dimension i has
value 1 for the entities who belong to category ci and has value 0

for other instances. One example is shown in Figure 3.

For ease of presentation, we assume there are three sensitive

attributes, one is denoted as S1 belonging to the mode-n1, another
two are denoted as S2 and S3 belonging to the mode-n2. And all of

them have three available categories to take. For example, in the

Twitter experts recommender, we want to enhance the fairness for

experts with different genders (Female, Male, and Unspecified) and

with different ethnicities (African-American, Asian, and White),

and at the same time we also want to augment the fairness for the

topics with different numbers of experts (small, medium, and large).

The sensitive features of S1 is S1 which has 3 columns. The sensitive

features of S2 and S3 are S2 and S3, and concatenate them together

to be S2,3 which has 6 columns. Then the objective function is:

minimize

XXX,A1 ...Ãn
1
...Ãn

2
...AN

LLL = ∥XXX − ⟦A1 . . . Ãn1
. . . Ãn2

. . .AN ⟧∥2F

+
λ

2

(∥A′′n1

⊤A′n1

∥2
F
+ ∥A′′n2

⊤A′n2

∥2
F
)

+
γ

2

N∑
i=1
∥Ai ∥2

F

subject to ΩΩΩ ⊛XXX = TTT,

Ãn1
= [A′n1

A′′n1

],
Ãn2
= [A′n2

A′′n2

],
A′′n1

= S1, A′′n2

= S2,3,

where Ãn1
and Ãn2

are the sensitive latent factor matrices, A′n1

and

A′n2

are non-sensitive dimensions of Ãn1
and Ãn2

, A′′n1

and A′′n2

are the sensitive dimensions of Ãn1
and Ãn2

which have the same

values as S1 and S2,3.



We can still use Algorithm 1 to solve the new objective function

with only line 8 and line 9 modified to update both Ãn1
and Ãn2

.

In the same way, the proposed method can be applied to model the

cases with more sensitive features and more categories.

5 EXPERIMENTS
In this section, we empirically evaluate the proposed approach

w.r.t three aspects – recommendation quality, recommendation

fairness, and effectiveness of eliminating sensitive information –

over four scenarios: (i) under the traditional matrix scenario; (ii)

then by comparing matrix to tensor approaches; (iii) by varying

the degrees of bias and sparsity to better explore their impact; and

(iv) evaluating FATR’s generalizability to the multi-feature and

multi-category scenario.

5.1 Datasets
We consider a real-world movie dataset, a real-world social media

dataset, and a collection of synthetic datasets for which we can

vary degrees of bias and sparsity. We report the average results

over three runs for all datasets.

MovieLens. We use the MovieLens 10k dataset [10], keeping all

movies with at least 35 ratings. Following previous works [12, 15],

we use the year of the movie as a sensitive attribute and consider

movies before 1996 as old movies. Those more recent are considered

new movies. In total, we have 671 users, 373 old movies, and 323

new movies. The sparsity of the dataset is 11.4%. Since we focus

on implicit recommendation, we consider ratings to be 1 if the

original ratings are higher than 3.5, otherwise 0. Then we have

15,579 positive ratings for new movies and 20,387 positive ratings

for old movies, which reflects the bias in the dataset. We randomly

split the dataset into 90% for training and 10% for testing.

User-Expert-Topic Twitter Data.We use a Twitter dataset intro-

duced in [8] that has 589 users, 252 experts, and 10 topics (e.g., news,

sports). There are 16, 867 links from users to experts across these

topics capturing that a user is interested in a particular expert. The

sparsity of this dataset is 1.136%. We consider race as a sensitive

attribute and aim to divide experts into two groups: whites and

non-whites. We apply the Face++ (https://www.faceplusplus.com/)

API to the images of each expert in the dataset to derive ethnicity.

In total, we find 126 whites and 126 non-whites, with 11,612 posi-

tive ratings for white experts but only 5,255 for non-whites. Since

this implicit feedback scenario has no negative observations, we

randomly pick unobserved data samples to be negative feedback

with probability of 0.113% (one tenth of the sparsity). We randomly

split the dataset into 70% training and 30% testing.

Synthetic Expert Datasets. To gauge the impact of degrees of

bias and sparsity, we further generate a suite of synthetic expert

datasets. We first generate three latent factor matrices by uniform

distribution for user, expert, and topic, which are U ∈ R200×30,
E ∈ R100×30, and T ∈ R5×30. Second, we set the last dimension of E
to be the binary sensitive features to indicate two groups and make

the numbers of the two groups equal. Third, we add constant values

vu and vt to the sensitive dimensions of U and T to increase the

bias. Then, we get the preference ratings tensor of size 200× 100× 5
by calculating the Khatri-Rao product of U, E, and T. Last, we set

1 to ratings lager than 0.5, meaning the user selects the expert

with respect to the topic and set 0 to ratings less than 0.5, meaning

the user does not select the expert with respect to the topic. We

randomly sample the 1’s based on a probability p to produce the

final observed dataset. By adjusting the values of vu and vt , we
generate datasets with varying imbalance of the proportion of the

number of the positive ratings for the protected group over the

total number of the positive ratings. With a proportion of 0.1, only

10% of positive ratings are for the protected group. We call this

an extreme bias case. Similarly, we generate datasets with high

bias (0.2), middle bias (0.3), and low bias (0.4). We further generate

three levels of sparsity, which are 0.01 (high sparsity), 0.02 (middle

sparsity), and 0.03 (low sparsity) by adjusting p. As a result, we

have 12 different datasets: High Bias / High Sparsity, High Bias /

Middle Sparsity, etc. All datasets are randomly split into 70% for

training and 30% for testing.

5.2 Metrics
We consider metrics to capture recommendation quality, recommen-

dation fairness, and the impact of eliminating sensitive information.

Recommendation Quality. To measure recommendation quality,
we adopt Precision@k (P@K) and Recall@k (R@K), defined as:

P@k =
1

|U|
∑
u ∈U

|Oku ∩ O+u |
k

, R@k =
1

|U|
∑
u ∈U

|Oku ∩ O+u |
O+u

,

where O+u is the set of items user u gives positive feedback to in

test set and Oku is the predicted top-k recommended items. We

also consider F1@k score, which can be calculated by F1@k =
2 · (P@k × R@k)/(P@k + R@k). We set k = 15 in our experiments.

Recommendation Fairness. To measure recommendation fair-
ness, we use two complementary metrics. The first one is the abso-

lute difference between mean ratings of different groups (MAD):

MAD = |
∑
R(0)

|R(0) |
−
∑
R(1)

|R(1) |
|,

where R(0) and R(1) are the predicted ratings for the two groups

and |R(i) | is the total number of ratings for group i . Larger values
indicate greater differences between the groups, which we interpret

as unfairness.

The second measure is the Kolmogorov-Smirnov statistic (KS),
which is a nonparametric test for the equality of two distributions.

The KS statistic is defined as the area difference between two em-

pirical cumulative distributions of the predicted ratings for groups:

KS = |
T∑
i=1

l × GGG(R(0), i)
|R(0) |

−
T∑
i=1

l × GGG(R(1), i)
|R(1) |

|,

where T is the number of intervals for the empirical cumulative

distribution, l is the size of each interval,GGG(R(0), i) counts howmany

ratings are inside the ith interval for group 0. In our experiments,

we set T = 50. Lower values of KS indicate the distributions are

more alike, which we interpret as being more fair.

MAD and KS can be directly applied to binary sensitive attributes.

For multi-category cases, we need to calculate MAD and KS statis-

tics for every dominant group vs. protected group pair among the



categories. For example, for the attribute of ethnicity with three cat-

egories – White (W), African-American (AA) and Asian (A), where

AA and A are the two groups to be protected – we need to calculate

the MAD and KS metrics for two pairs – W vs. AA, and W vs. A.

Note that we measure the fairness in terms of MAD and KS

metrics across groups rather than within individuals, since absolute

fairness for every individual may be overly strict and in opposition

to personalization needs of real-world recommenders.

Eliminating Sensitive Information. To evaluate the impact of

eliminating sensitive information, we use the sum of absolute cosine

angles between non-sensitive and sensitive dimensions (SCos):

SCos =
r−2∑
i=1

r∑
j=r−1

|cos(Ai ,Aj )|,

where Ai and Aj are one non-sensitive dimension and one sensitive

dimension indexed by i and j, and cos calculates the cosine angle
between two vectors.

We also use the sum of absolute Pearson correlation coefficient be-
tween non-sensitive and sensitive dimensions (SCorr) to quantify

the sensitive information:

SCorr =
r−2∑
i=1

r∑
j=r−1

|corr (Ai ,Aj )|,

where corr calculates the Pearson correlation coefficient between two
vectors. The lower the SCos and SCorr are, the better the sensitive

information elimination result is.

For multi-category cases, Scos and Scorr should be calculated

for every category separately to evaluate whether the impact of the

multi-category attribute is eliminated with respect to all categories.

Following our ethnicity example from earlier, we need to calculate

SCos and SCorr for W, AA, and A separately.

5.3 Baselines
To evaluate the proposed FATR, we consider two variations – one

using Gradient Descent (FT(G)) and one using Newton’s Method

(FT(N)) – in comparison with two tensor-based alternatives:

• Ordinary Tensor Completion (OTC): The first is the conventional
CP-based tensor completion method using ALS optimization

algorithm as introduced in Section 2.2. This baseline incorporates

no notion of fairness, so it will provide a good sense of the state-

of-the-art recommendation quality we can achieve.

• Regularization-based Tensor Completion (RTC): The second one is
an extension from the fairness-enhanced matrix completion with

regularization method introduced in [12, 14, 28], which adds a

bias penalization term to the objective function. For tensor-based

recommenders, we can use the regularized objective function (8)

to enforce the statistical parity.

minimize

XXX,A1, ...,AN
LLL = ∥XXX − ⟦A1, . . . ,AN ⟧∥2F

+
λ

2

( 1
n0
∥Ω0Ω0Ω0 ⊛ ⟦A1, . . . ,AN ⟧∥2F

− 1

n1
∥Ω1Ω1Ω1 ⊛ ⟦A1, . . . ,AN ⟧∥2F)

2

subject to ΩΩΩ ⊛XXX = TTT,

(8)

Figure 4: Recommendation quality (MovieLens).

Figure 5: Recommendation fairness (MovieLens).

Figure 6: Eliminating Sensitive Information (MovieLens).

where λ > 0 is the regularization coefficient, Ω0Ω0Ω0 and Ω1Ω1Ω1 are the

indicator tensors to indicate the ratings of the two groups deter-

mined by the binary sensitive attribute, n0 and n1 are the numbers

of ratings to the two groups. We use Gradient Descent to solve this

optimization problem.

Since theMovieLens data has only twomodes (users andmovies),

we consider matrix versions of our tensor based methods (named

FM(G) and FM(N)) versus matrix baselines of Ordinary Matrix
Completion (OMC) and Regularization-based Matrix Completion
(RMC) corresponding to RTC.

5.4 Matrix-Based Methods (MovieLens)
For the first experiment, we evaluate the four matrix-based ap-

proaches (OMC, RMC, FM(G) and FM(N)) over the MovieLens

dataset. We set 50 as the latent dimension for all the methods

and fine tune all other parameters; for our proposed methods we

set λ = 1, γ = 0.05 and learning rate as 0.001 for FM(G), and

λ = 0.00001 and γ = 0.01 for FM(N).

We begin by considering the quality of recommendation of the

four approaches in Figure 4. As expected, the baseline with no

notion of fairness – OMC – results in the best overall precision and

recall. Of the three fairness-aware approaches, the regularization-

based approach – RMC – performs considerably below the others,

with our two approaches (FM) providing performance fairly close to

OMC. This suggests that recommendation quality can be preserved,

but leaves open the question of whether we can add fairness.

Hence, we turn to the impact on fairness of the four approaches.

Figure 5 presents the KS statistic and MAD (recall, lower is bet-

ter). We can see that all three fairness-aware approaches – RMC,

FM(G) and FM(N) – have a strong impact on the KS statistic in

comparison with OMC. And for MAD, we see that both FM(G) and

FM(N) achieve much better ratings difference in comparison with

RMC, indicating that we can induce aggregate statistics that are

fair between the two sides of the sensitive attribute (old vs. new).

Last, we exam how well do these approaches perform from the

perspective of sensitive information elimination. The left figure in

Figure 6 shows the SCos statistic, while the right figure shows the



Methods R@15 P@15 KS MAD SCos SCorr

OMC 0.3467 0.0842 0.1660 0.0122 7.8035 1.9131

OTC 0.4384 0.0958 0.3662 0.0333 21.9193 8.7732

RMC 0.1609 0.0702 0.1521 0.0086 15.3268 0.8534

RTC 0.3003 0.0515 0.2003 0.0171 23.6818 1.4036

FM(G) 0.4045 0.0891 0.0523 0.0037 0.3081 0.1407

FT(G) 0.4180 0.0870 0.0195 0.0024 0.0936 0.0396

FM(N) 0.3298 0.0687 0.0245 0.0044 0.0022 0.0115

FT(N) 0.3975 0.0786 0.0173 0.0029 0.0001 0.0001

Table 2: Comparison for recommending Twitter experts.

SCorr statistic. Both of them demonstrate that the proposed FATR

framework can eliminate sensitive information to a great extent,

but RMC can only reduce the SCos to around half of that of OMC

and SCorr to around one third of that of OMC.

5.5 Matrix vs. Tensor-Based Methods (Twitter)
We next turn to evaluating the expert recommendation task over

the real-world Twitter dataset. Here we consider the tensor-based

approaches – OTC, RTC, plus FT(G) and FT(N). To further evaluate

the impact of moving from a matrix view to a tensor view, we also

consider the purely matrix-based approaches, which compute users

preferences on experts for each topic independently. We set 20 as

the latent dimension for all the methods and fine tune all other

parameters; for our proposed methods we set λ = 1, γ = 0.05 and

learning rate as 0.001 for FM(G), and λ = 0.00001 and γ = 0.01 for

FM(N). We show the results for all of our metrics in Table 2.

First, let’s focus on the differences between matrix and tensor ap-

proaches. We observe that the tensor-based approaches mostly pro-

vide better recommendation quality (Precision@k and Recall@k)

in comparison with the matrix-based approaches. Since the ex-

pert dataset is naturally multi-aspect, the tensor approaches better

model the multi-way relationships among users, experts, and top-

ics. We see that the fairness quality (KS and MAD) of matrix-based

methods are better than tensor-based ones for the baselines meth-

ods (OMC vs OTC, and RMC vs RTC), but the fairness improves for

our proposed methods when wemove frommatrix to tensor. We see

a similar result for the impact on eliminating sensitive information

(SCos and SCorr).

Second, let’s consider the empirical results across approaches.

We see that: (i) the proposed methods are slightly worse than OTC

from the perspective of recommendation quality, but keep the differ-

ence small, and FMmethods also have comparable recommendation

performance with OMC; (ii) FT(G) and FT(N) provide the best fair-

ness enhancement results, and FM(G) and FM(N) also alleviate the

unfairness a lot compared with other matrix-based methods. RTC

and RMC improve the fairness as well, but their effects are not as

good as the proposed methods; (iii) the proposed approaches can ef-

fectively eliminate the sensitive information; and (iv) comparing the

two variations of FATR, FT(G) always provides better recommen-

dation quality but performs worse than FT(N) in terms of fairness

enhancement and sensitive information elimination, which may

be because Newton’s method has stronger effects on optimization

leading to more effective minimization of the orthogonal constraint

term FFF =
λ

2

∥A′′n ⊤A′n ∥2F in Equation (3).

In addition, the

γ

2

∑N
i=1∥Ai ∥2

F
term in our proposed objective

function (3) may influence the recommendation performance, but

Figure 7: F1@15 and KS statistics of the proposed methods
and the baselines with L2-norm terms.

the baselines do not have it, which may be an unfair comparison.

Therefore, we do another experiment using OTC, RTC, OMC, and

RMC with the L2-norm term. The recommendation performance

results and fairness enhancement results are shown in Figure 7. We

can conclude similarly that the proposed methods still perform well

in terms of both recommendation quality and fairness enhancement.

Besides, we find that compared with the baselines without L2-norm

terms, the baselines with L2-norm have better recommendation

quality but higher bias.

5.6 Varying Bias and Sparsity (Synthetic)
Next, we consider the impact of bias and sparsity through a series

of experiments over the synthetic expert datasets. For parameters

setting, the latent factor dimension is set as 20, we set λ = 0.25,

γ = 0.05, learning rate as 0.002 for FT(G), and λ = 0.0001 and

γ = 0.1 for FT(N). We set the latent dimension smaller than 30 on

purpose, which is the number of factors we use when generating

the synthetic dataset, because in practice, researchers tend to use

low dimensional latent factor to model user-item interactions.

We begin by investigating the impact of bias – do our methods

perform well even in cases of extreme bias? Or do they require only

moderate amounts?We fix the sparsity level at 0.02 and vary the bias

levels from Low, Middle, High, and Extreme. We show in Figure 8a

the F1@15 of all eight methods on these four datasets. The results

show that OTC always performs best, but FT(G) does not reduce the

F1 score much compared with other methods. Overall, tensor-based

methods outperform matrix-based methods. And within matrix-

based methods, FM(G) is just a little worse than OMC, and much

better than RMC. Further, we can observe that as the bias level goes

down, the recommendation quality is improved for all six fairness-

aware methods in comparison with OTC and OMC. For example

the F1@15 score difference between OTC and FT(G) are 0.0041,

0.0034, 0.0031, and 0.0015 for the extreme, high, medium, and low

bias situations respectively. Figure 8b shows that for all the bias

levels, the proposed FT(G) and FT(N) can enhance the fairness to a

great extent. We can also observe that RTC and RMC can reduce the

unfairness compared with conventional completion methods, but

their performances are not comparable with the proposed methods.

One outlier is the result produced by RMC in the low bias dataset.

Although it reduces the KS as low as proposed methods do, its

recommendation quality is not ideal. We also study how well do

these methods eliminate sensitive information as demonstrated in

Figure 8c. The figure shows that the proposed methods (both tensor-

based and matrix-based) have the lowest SCos values, meaning that

our methods can effectively eliminate the sensitive information.

From these results, we can conclude that the proposed approaches

provide good and consistent performance over all the bias levels.



(a) Recommendation quality: F1@15. (b) Fairness: KS Statistic. (c) Sensitive information elimination: SCos.

Figure 8: Evaluating the impact of bias (Synthetic Experts dataset).

(a) Recommendation quality: F1@15. (b) Fairness: KS Statistic. (c) Sensitive information elimination: SCos.

Figure 9: Evaluating the impact of sparsity under extreme bias (Synthetic Experts dataset).

Furthermore, we also analyze the results for datasets with various

sparsities with bias level fixed at the extreme level. The results are

shown in Figure 9. We can draw the similar conclusion from it

that the proposed methods reduce the unfairness without much

loss of the prediction accuracy for different sparsities. However, in

addition to this conclusion, these results also imply that with the

dataset being denser, the unfairness is more severe. Combining the

observations from Figure 8 and Figure 9, we can learn that: (i) tensor

completion possesses more algorithmic bias thanmatrix completion

does; and (ii) the proposed FATR methods have consistent fairness-

enhancement and sensitive information eliminating performance

on datasets with various bias levels and sparsities. We also compute

MAD and SCorr statistics, showing similar patterns as KS and SCos.

5.7 Multiple Features and Multiple Categories
Finally, by the same dataset as used in Section 5.5, we investigate

how the proposed model performs with multiple features and multi-

ple categories (as introduced in Section 4). We consider both gender

and ethnicity as sensitive attributes. For ease of experimentation,

we consider gender (G) as a binary feature (M=Male, F=Female).

For ethnicity, we consider three categories: White (W), African-

American (AA), and Asian (A). Our dataset contains 126 whites

with 11,612 positive feedbacks, 80 Asian people with 2,238 feed-

backs, and 46 African-Americans with 3,017 positive feedbacks.

The distribution of the gender is: 163 males and 83 females. Males

have 10,160 positive ratings and females have 6,707 positive ratings.

Other settings of the experiment are the same as single-feature

experiment as described in Section 5.5.

For the parameters settings, we set the latent factor dimension

as 20 for OTC, but 25 for FT(G) and FT(N) because there are 5

dimensions occupied by the sensitive dimensions, and we want

similar degree of freedom for all the methods. We set λ = 0.05,

γ = 0.05, and the learning rate 0.002 for FT(G), and λ = γ = 1

for FT(N). Because regularization-based models cannot be easily

applied to this scenario, we compare FT(G) and FT(N) with OTC.

Figure 10a illustrates that the proposed methods can keep a

relatively high recommendation quality compared with the OTC.

Figure 10b shows that FT(N) model have a good fairness enhance-

ment performance for both attributes. FT(G) works well on the

ethnicity feature but a little unsatisfactory for the gender feature.

One possible reason is that FT(G) requires more effort for parameter

tuning. Moreover, the bias related to the ethnicity feature is more

severe than the unfairness related to the gender feature, which

makes it harder for the model to decrease the unfairness for the

gender feature. Figure 10c shows the relationships between the

latent factor matrices from the three methods and all the sensitive

features. It implies that the FATR models can alleviate the impact of

the sensitive information from all the sensitive attributes. Further,

we see that FT(N) works well for all attributes including gender

(which is challenging for the other approaches).

6 RELATEDWORK
Friedman [7] defined that a computer system is biased “if it sys-

tematically and unfairly discriminates against certain individuals

or groups of individuals in favor of others.” As we have mentioned,

considerable efforts have focused on classification tasks (e.g., re-

cidivism prediction, loan approval) [5, 22, 25, 30, 31]. In the con-

text of recommenders, Kamishima et al. first claimed the impor-

tance of neutrality in recommendation [13], and proposed two

methods to enhance the fairness in explicit recommender systems.

One is a regularization-based matrix completion method [14], an-

other is a graph model-based method [15]. The performances of

these two methods are similar. Later, Kamishima et al. extended

the work in [14] to tackle the challenge of implicit recommen-

dation problem [12]. Yao et al. [28, 29] proposed four novel met-

rics for fairness in collaborative filtering recommender systems

and used similar regularization-based optimization approach as

Kamishima did in [12, 14] to address the problems caused by differ-

ent forms of bias. Moreover, there are some literatures working on

fairness-enhancement for more specific scenarios. Abdollahpouri

et al. [1] used a regularization-based matrix completion method to

control popularity bias in learning-to-rank recommendation. Xiao

et al. [27] proposed a multi-objective optimization model to imple-

ment fairness-aware group recommendation. Burke et al. [4] also



(a) Recommendation
quality: F1@15.

(b) Fairness Quality: KS and MAD. (c) Sensitive information elimination: SCos and
SCorr.

Figure 10: Evaluating the generalizing ability to multi features and multi categories.

used a regularization-based matrix completion method to balance

neighborhood fairness in collaborative recommendation.

7 CONCLUSION AND FUTUREWORK
This paper proposes a novel framework – FATR – to enhance the

fairness for implicit recommender systems while maintaining rec-

ommendation quality. FATR effectively eliminates sensitive infor-

mation and provides fair recommendation with respect to the sensi-

tive attribute. Further, unlike previous efforts, the proposed model

can also handle multi-feature and multi-category cases. Extensive

experiments show the effectiveness of FATR compared with state-

of-the-art alternatives. In our continuing work, we are interested

in generalizing our framework to consider alternative notions of

fairness beyond statistical parity. By extending our framework in

this direction, we can provide a more customizable approach for

defining and deploying fairness-aware methods. We are also inter-

ested in exploring how to incorporate real-valued features into the

framework for recommenders with explicit ratings, and in running

user studies on the perceived change of fairness for our methods.
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